
300420201044
https://github.com/jcjohnson/pytorch-examples#pytorch-custom-nn-modules
import torch
I’m starting a GPU graphics card (which I don’t have)
Odpalam karte graficzną GPU (której nie mam)
device = torch.device('cpu') # obliczenia robie na CPU
#device = torch.device('cuda') # obliczenia robie na GPU
import pandas as pd
df = pd.read_csv('/home/wojciech/Pulpit/1/WorldHappinessReport.csv')
df.head(3)
Unnamed: 0 | Country | Region | Happiness Rank | Happiness Score | Economy (GDP per Capita) | Family | Health (Life Expectancy) | Freedom | Trust (Government Corruption) | Generosity | Dystopia Residual | Year | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | Afghanistan | Southern Asia | 153.0 | 3.575 | 0.31982 | 0.30285 | 0.30335 | 0.23414 | 0.09719 | 0.36510 | 1.95210 | 2015.0 |
1 | 1 | Albania | Central and Eastern Europe | 95.0 | 4.959 | 0.87867 | 0.80434 | 0.81325 | 0.35733 | 0.06413 | 0.14272 | 1.89894 | 2015.0 |
2 | 2 | Algeria | Middle East and Northern Africa | 68.0 | 5.605 | 0.93929 | 1.07772 | 0.61766 | 0.28579 | 0.17383 | 0.07822 | 2.43209 | 2015.0 |
I fill all holes with values out of range
Wypełniam wszystkie dziury wartościami z poza zakresu
del df['Unnamed: 0']
df = df.dropna(how='any')
# df.fillna(-777, inplace=True)
df.isnull().sum()
Country 0 Region 0 Happiness Rank 0 Happiness Score 0 Economy (GDP per Capita) 0 Family 0 Health (Life Expectancy) 0 Freedom 0 Trust (Government Corruption) 0 Generosity 0 Dystopia Residual 0 Year 0 dtype: int64
print(df.dtypes)
df.head(3)
Country object Region object Happiness Rank float64 Happiness Score float64 Economy (GDP per Capita) float64 Family float64 Health (Life Expectancy) float64 Freedom float64 Trust (Government Corruption) float64 Generosity float64 Dystopia Residual float64 Year float64 dtype: object
Country | Region | Happiness Rank | Happiness Score | Economy (GDP per Capita) | Family | Health (Life Expectancy) | Freedom | Trust (Government Corruption) | Generosity | Dystopia Residual | Year | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Afghanistan | Southern Asia | 153.0 | 3.575 | 0.31982 | 0.30285 | 0.30335 | 0.23414 | 0.09719 | 0.36510 | 1.95210 | 2015.0 |
1 | Albania | Central and Eastern Europe | 95.0 | 4.959 | 0.87867 | 0.80434 | 0.81325 | 0.35733 | 0.06413 | 0.14272 | 1.89894 | 2015.0 |
2 | Algeria | Middle East and Northern Africa | 68.0 | 5.605 | 0.93929 | 1.07772 | 0.61766 | 0.28579 | 0.17383 | 0.07822 | 2.43209 | 2015.0 |
Encodes text values¶
Koduje wartości tekstowe
import numpy as np
a,b = df.shape #<- ile mamy kolumn
b
print('DISCRETE FUNCTIONS CODED')
print('------------------------')
for i in range(1,b):
i = df.columns[i]
f = df[i].dtypes
if f == np.object:
print(i,"---",f)
if f == np.object:
df[i] = pd.Categorical(df[i]).codes
continue
DISCRETE FUNCTIONS CODED ------------------------ Region --- object
df['Country'] = pd.Categorical(df['Country']).codes
df['Country'] = df['Country'].astype(int)
df.dtypes
Country int64 Region int8 Happiness Rank float64 Happiness Score float64 Economy (GDP per Capita) float64 Family float64 Health (Life Expectancy) float64 Freedom float64 Trust (Government Corruption) float64 Generosity float64 Dystopia Residual float64 Year float64 dtype: object
I specify what is X and what is y¶
Określam co jest X a co y
X = df.drop('Happiness Score',axis=1)
y =df['Happiness Score']
Scaling (normalization) of the X value¶
X should never be too big. Ideally, it should be in the range [-1, 1]. If this is not the case, normalize the input.
Skalowanie (normalizacja) wartości X
X nigdy nie powinien być zbyt duży. Idealnie powinien być w zakresie [-1, 1]. Jeśli tak nie jest, należy znormalizować dane wejściowe.
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X = sc.fit_transform(X)
print(np.round(X.std(), decimals=2), np.round(X.mean(), decimals=2))
1.0 0.0
y = y / 100 # max test score is 100
#print(y.head(3))
print(np.round(y.std(), decimals=2), np.round(y.mean(), decimals=2))
0.01 0.05
Creates random input and output¶
Tworzy losowe dane wejściowe i wyjściowe
import numpy as np
#X = X.values #- jak była normalizacja to to nie działa
X = torch.tensor(X)
print(X[:3])
tensor([[-1.7017, 0.6348, 1.6377, -1.4634, -2.1570, -1.1514, -1.1211, -0.3355, 0.9371, -0.2564, -1.2157], [-1.6806, -1.3723, 0.3567, -0.1154, -0.5823, 0.9770, -0.3015, -0.6331, -0.7552, -0.3511, -1.2157], [-1.6595, -0.3688, -0.2395, 0.0309, 0.2762, 0.1606, -0.7774, 0.3545, -1.2461, 0.5988, -1.2157]], dtype=torch.float64)
X = X.type(torch.FloatTensor)
print(X[:3])
tensor([[-1.7017, 0.6348, 1.6377, -1.4634, -2.1570, -1.1514, -1.1211, -0.3355, 0.9371, -0.2564, -1.2157], [-1.6806, -1.3723, 0.3567, -0.1154, -0.5823, 0.9770, -0.3015, -0.6331, -0.7552, -0.3511, -1.2157], [-1.6595, -0.3688, -0.2395, 0.0309, 0.2762, 0.1606, -0.7774, 0.3545, -1.2461, 0.5988, -1.2157]])
y = y.values # tworzymy macierz numpy - jak była normalizacja to to nie działa
y = torch.tensor(y)
print(y[:3])
tensor([0.0358, 0.0496, 0.0561], dtype=torch.float64)
y = y.view(y.shape[0],1)
y[:5]
tensor([[0.0358], [0.0496], [0.0561], [0.0403], [0.0657]], dtype=torch.float64)
y = y.type(torch.FloatTensor)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
y = sc.fit_transform(y)
print(np.round(y.std(), decimals=2), np.round(y.mean(), decimals=2))
print('X:',X.shape)
print('y:',y.shape)
X: torch.Size([469, 11]) y: torch.Size([469, 1])
Model¶
N, D_in = X.shape
N, D_out = y.shape
H = 30
device = torch.device('cpu')
model = torch.nn.Sequential(
torch.nn.Linear(D_in, H),
torch.nn.ReLU(),
torch.nn.Linear(H, D_out),
).to(device)
MSE loss function¶
Funkcja straty MSE
loss_fn = torch.nn.MSELoss(reduction='sum')
Define of learning¶
Definiowanie nauki
y_pred = model(X)
y_pred
tensor([[-4.2745e-01], [-3.6429e-03], [ 3.1600e-02], [-2.2681e-01], [-1.1513e-02], [-1.9216e-02], [-1.2311e-01], [-1.6105e-02], [ 5.4885e-02], [ 9.3276e-02], [-2.9303e-01], [ 1.1384e-01], [-4.6793e-03], [-3.5003e-01], [ 3.0583e-02], [-2.9466e-02], [-3.8709e-02], [-2.5406e-01], [-3.9137e-02], [ 1.5388e-01], [-1.7763e-01], [-4.0004e-01], [-7.0890e-02], [-3.0126e-01], [ 3.5626e-02], [-5.6126e-01], [-3.2454e-01], [ 6.9069e-03], [ 3.5522e-02], [-1.2959e-02], [-1.5253e-01], [-2.5984e-01], [-4.0041e-01], [-5.3569e-02], [-1.1350e-01], [ 9.3323e-03], [-1.2873e-02], [ 7.2967e-02], [-1.7973e-01], [ 4.2126e-02], [ 6.5027e-02], [-4.2669e-02], [ 1.8619e-02], [ 5.1381e-02], [-2.5496e-01], [ 6.6168e-02], [ 5.5571e-02], [-1.2586e-01], [-7.1015e-02], [ 2.4031e-02], [-2.3470e-01], [-1.3440e-01], [-2.7763e-02], [-3.9259e-01], [-2.1299e-01], [ 5.2305e-02], [-2.6931e-02], [ 1.1370e-01], [ 2.0505e-02], [-2.2530e-01], [-3.1724e-02], [-7.1249e-02], [-1.0609e-01], [ 7.5583e-02], [ 4.1280e-02], [ 1.3634e-01], [-3.2085e-01], [ 2.0309e-03], [-6.4143e-02], [ 8.2991e-02], [ 1.4143e-02], [-1.6307e-01], [-1.0309e-01], [-4.9232e-02], [-1.1677e-01], [ 1.1351e-02], [ 6.3761e-02], [ 5.0787e-02], [-3.0608e-01], [-3.4375e-01], [ 8.4144e-02], [-1.4717e-02], [ 2.7701e-03], [ 1.3630e-02], [-2.3664e-01], [-4.8505e-01], [ 5.1280e-02], [-2.8454e-01], [ 3.6705e-02], [-1.4809e-01], [ 2.8126e-02], [ 7.9958e-02], [-1.6470e-01], [-6.7994e-02], [-3.5120e-02], [-1.1673e-01], [-3.4031e-01], [-1.6971e-01], [-1.3144e-01], [ 1.3408e-01], [-8.7675e-02], [-4.2872e-03], [-3.4742e-01], [-3.2806e-01], [ 1.1534e-01], [ 8.0059e-03], [-2.1437e-02], [-2.8561e-01], [ 1.9570e-02], [ 4.2293e-02], [-9.1104e-02], [-3.6440e-02], [-1.9679e-01], [-9.4737e-02], [-3.7697e-02], [-7.7243e-02], [-6.1722e-02], [-9.0355e-02], [-1.8373e-02], [ 1.5134e-01], [-1.8642e-01], [-3.2258e-02], [-4.8399e-01], [ 1.3403e-01], [-2.6324e-03], [-1.4263e-01], [ 1.1676e-01], [-1.5671e-01], [-1.2794e-02], [ 8.9764e-02], [-1.1662e-01], [-1.2209e-01], [ 3.5171e-02], [-3.4670e-01], [ 9.6369e-02], [ 3.5116e-02], [ 1.1252e-01], [ 1.8931e-02], [-2.9094e-01], [-2.5447e-01], [-9.2450e-02], [-3.7711e-01], [-8.0330e-02], [-1.0223e-01], [ 3.7966e-02], [-6.4997e-02], [-3.4390e-01], [-1.6943e-01], [-4.6404e-02], [ 1.6054e-01], [ 4.9439e-02], [-1.3906e-02], [-2.0814e-01], [ 3.2258e-02], [-1.5231e-01], [-2.8329e-01], [-2.1860e-01], [-2.4882e-01], [-5.0408e-01], [-9.2120e-02], [-2.7293e-01], [-4.1514e-01], [-1.0440e-01], [-1.3683e-01], [-1.2180e-01], [-2.2596e-01], [-1.2288e-02], [-9.5664e-02], [-3.5454e-01], [-3.7126e-04], [-2.1165e-01], [-7.6128e-02], [-4.0232e-01], [-3.9331e-02], [-3.5365e-02], [-1.9719e-01], [-1.2559e-01], [-1.2059e-01], [ 1.1621e-01], [-2.5765e-01], [-5.2664e-01], [-1.2323e-01], [-3.3721e-01], [-1.0469e-01], [-4.3728e-01], [-1.0070e-01], [ 1.8569e-02], [-3.4372e-02], [-3.0936e-01], [-2.6187e-01], [-4.2382e-01], [-4.3243e-02], [-1.5634e-01], [-1.7728e-01], [-2.3042e-02], [-1.4630e-01], [ 9.1151e-02], [-2.4256e-02], [-1.9366e-01], [-7.1570e-02], [ 9.4558e-02], [-3.4334e-01], [-1.1295e-01], [-1.2794e-01], [-2.0222e-01], [-1.5829e-01], [-1.2256e-01], [-2.5393e-01], [-3.0474e-01], [-1.8759e-02], [-4.3256e-01], [-3.7892e-01], [-6.8839e-02], [-8.8371e-03], [ 4.7923e-03], [-8.7923e-02], [-2.4323e-01], [-1.3643e-01], [-1.3913e-01], [-1.2775e-01], [-9.1886e-02], [-3.2819e-02], [-6.7460e-02], [-3.2325e-01], [ 2.9318e-02], [-3.5069e-02], [-1.7418e-02], [ 6.5475e-02], [-2.6579e-01], [-1.8996e-01], [-4.6490e-02], [-1.3474e-01], [-1.3473e-01], [ 1.5172e-02], [-9.3274e-02], [-4.2761e-01], [ 5.3500e-02], [-2.9554e-02], [-1.3342e-01], [ 9.8934e-03], [-3.9405e-01], [-4.8164e-01], [-1.5648e-02], [-2.8614e-01], [-4.0472e-02], [-1.9807e-01], [-9.5416e-03], [ 2.7897e-02], [-1.5682e-01], [ 1.7725e-02], [-1.0876e-01], [-2.4430e-01], [-1.7526e-01], [-1.6604e-01], [-2.1545e-01], [ 4.2694e-03], [-1.1699e-01], [-9.5717e-03], [-3.3002e-01], [-4.2078e-01], [ 3.9176e-03], [-4.7472e-02], [-3.7422e-01], [-1.2959e-01], [ 5.5540e-02], [-2.9904e-02], [-1.7143e-02], [-3.9630e-02], [-1.4988e-03], [-3.3803e-02], [ 4.2111e-02], [-1.4506e-01], [-2.0571e-02], [-1.7663e-02], [-1.1568e-01], [ 7.8986e-02], [-2.1377e-01], [-5.9858e-02], [-4.7240e-01], [-1.3849e-02], [-9.6779e-03], [-2.2012e-02], [-2.2544e-01], [-1.2726e-01], [-1.6832e-01], [-2.2275e-02], [-4.5899e-01], [ 7.5663e-02], [-8.2426e-02], [-3.2082e-01], [ 6.7503e-02], [ 1.9751e-02], [-1.8723e-02], [-9.1598e-02], [ 2.2715e-02], [-2.2554e-01], [-2.8882e-01], [-1.3291e-01], [-3.9947e-01], [-2.4364e-02], [-1.6493e-01], [-2.1627e-02], [ 1.0300e-02], [-3.8896e-01], [-6.3563e-02], [-3.2330e-02], [ 6.4565e-02], [ 2.2611e-02], [ 2.0242e-02], [-1.9253e-01], [-3.0338e-02], [-1.4017e-01], [-2.6179e-01], [-2.6843e-01], [-3.8787e-01], [-3.5069e-01], [ 1.5691e-01], [-7.9159e-02], [-1.3093e-01], [-8.4490e-02], [ 1.2835e-01], [-2.8785e-01], [-2.7760e-01], [ 1.2939e-01], [-1.2159e-01], [-4.6848e-03], [ 1.1916e-01], [-2.7076e-01], [ 7.8918e-03], [-2.1981e-01], [-6.0121e-02], [-1.7439e-02], [ 7.2381e-02], [-1.0266e-01], [-6.7563e-02], [ 2.5719e-01], [-7.8539e-02], [-2.9228e-01], [-5.9970e-02], [-1.7658e-01], [-2.2883e-01], [-5.3707e-01], [-2.8134e-01], [-7.9801e-02], [ 5.3754e-02], [-3.9891e-02], [-5.8873e-02], [-1.5668e-01], [-1.1001e-01], [ 7.7573e-02], [-1.3546e-01], [-1.5186e-01], [-2.6282e-01], [-3.5541e-02], [ 3.5792e-02], [ 1.1476e-01], [ 4.4816e-02], [-5.3945e-02], [-6.5655e-02], [-2.3092e-01], [-1.7522e-01], [-5.9290e-02], [ 6.0194e-02], [-2.2226e-01], [-8.5102e-02], [-1.0436e-01], [-5.1286e-02], [-1.8722e-01], [-2.4780e-01], [ 1.2161e-01], [ 1.5192e-01], [-2.8800e-01], [ 4.1241e-02], [-1.8488e-01], [ 3.2783e-02], [ 1.5595e-01], [-2.3525e-01], [-1.3962e-01], [-8.9306e-02], [-1.8592e-01], [-1.2561e-03], [-1.9509e-01], [ 9.9536e-02], [-3.7024e-02], [-1.2256e-01], [ 5.7584e-02], [-1.6568e-01], [-6.1208e-02], [ 1.3184e-02], [ 1.0873e-01], [-2.0101e-01], [-2.3157e-01], [-5.2749e-02], [ 5.3078e-02], [-2.7642e-01], [ 1.1204e-01], [-1.2318e-01], [-2.4445e-01], [-1.3769e-01], [-7.3394e-02], [-2.5623e-01], [-3.1583e-03], [-9.2862e-02], [-2.1318e-02], [-5.9814e-02], [-6.7896e-02], [ 1.3920e-01], [ 2.1923e-02], [-2.5978e-01], [-1.5678e-01], [-1.4222e-01], [-1.7531e-02], [-1.8887e-01], [-3.4119e-01], [-6.7630e-03], [-1.6711e-01], [-1.9834e-01], [-7.1525e-02], [-2.5377e-01], [-2.7868e-01], [ 4.1292e-02], [-2.2371e-01], [-1.3157e-01], [-4.2236e-02], [-1.5551e-01], [-2.3040e-01], [-1.7524e-01], [-3.6064e-01], [-1.9167e-02], [-1.1715e-01], [-1.2774e-01], [-1.4843e-01], [-2.8300e-02], [ 3.3448e-02], [-3.5775e-01], [-2.6867e-01], [-7.0971e-02], [-2.8985e-01], [-2.7948e-01], [-2.4863e-01], [-1.3089e-02], [-3.3796e-01], [-1.9001e-01], [-2.2440e-01], [-1.2782e-01], [-1.8728e-01], [-2.1334e-01], [-8.4375e-02], [-1.5037e-01], [-2.0170e-01], [-1.6970e-01], [-3.8650e-01], [-3.0448e-01], [-2.8647e-01], [-2.9811e-02], [-1.0393e-01], [-1.6981e-01], [-2.5891e-01], [-6.0411e-02], [-2.9120e-01], [-2.3515e-01], [-3.4595e-01], [-3.2688e-01], [-4.6198e-01], [-7.3562e-02], [-2.4096e-01], [-1.1416e-01], [-2.0195e-01], [-2.3524e-01]], grad_fn=<AddmmBackward>)
learning_rate = 1e-4
epochs = 2500
aggregated_losses = []
for t in range(epochs):
y_pred = model(X)
loss = loss_fn(y_pred, y) # <=# Obliczenie i wydruku straty. Mijamy Tensory zawierające przewidywane i prawdziwe
print(t, loss.item()) # <=# wartości y, a funkcja straty zwraca Tensor zawierający stratę.
aggregated_losses.append(loss) ## potrzebne do wykresu
model.zero_grad() #<= # Zeruj gradienty przed uruchomieniem przejścia do tyłu.
loss.backward() #<== Przełożenie wsteczne: oblicz gradient gradientu w odniesieniu do wszystkich możliwych do nauczenia się
# parametrów modelu. Wewnętrznie parametry każdego modułu są przechowywane
# w Tensorach z requires_grad=True, więc to wywołanie obliczy gradienty
# wszystkich możliwych do nauczenia parametrów w modelu.
with torch.no_grad(): #<== Zaktualizuj ciężary za pomocą opadania gradientu. Każdy parametr jest tensorem, więc
for param in model.parameters(): # możemy uzyskać dostęp do jego danych i gradientów tak jak wcześniej.
param.data -= learning_rate * param.grad
0 22.952877044677734 1 13.857816696166992 2 9.691527366638184 3 7.705139636993408 4 6.698968887329102 5 6.140297889709473 6 5.791937828063965 7 5.546450614929199 8 5.3543548583984375 9 5.19241189956665 10 5.049210548400879 11 4.918918609619141 12 4.798333168029785 13 4.685548305511475 14 4.579348087310791 15 4.478791236877441 16 4.383253574371338 17 4.292238235473633 18 4.205319881439209 19 4.122212886810303 20 4.042584419250488 21 3.9661753177642822 22 3.8927762508392334 23 3.8221662044525146 24 3.754176616668701 25 3.6886744499206543 26 3.625523567199707 27 3.5645980834960938 28 3.505775213241577 29 3.4489235877990723 30 3.393965482711792 31 3.340808868408203 32 3.2893426418304443 33 3.2395153045654297 34 3.191263198852539 35 3.1444873809814453 36 3.099121332168579 37 3.0551016330718994 38 3.0123729705810547 39 2.970889091491699 40 2.9305853843688965 41 2.8914124965667725 42 2.8533215522766113 43 2.8162498474121094 44 2.7801461219787598 45 2.7450110912323 46 2.7107717990875244 47 2.677427053451538 48 2.6449227333068848 49 2.61322283744812 50 2.5823092460632324 51 2.5521597862243652 52 2.5227556228637695 53 2.494032382965088 54 2.4659388065338135 55 2.438509702682495 56 2.4117209911346436 57 2.3855485916137695 58 2.359961986541748 59 2.3349292278289795 60 2.3104190826416016 61 2.286430597305298 62 2.2629616260528564 63 2.2399888038635254 64 2.217496871948242 65 2.1954705715179443 66 2.173887252807617 67 2.1527469158172607 68 2.132028579711914 69 2.111713409423828 70 2.0917868614196777 71 2.0722455978393555 72 2.053072214126587 73 2.0342624187469482 74 2.0158121585845947 75 1.9977023601531982 76 1.9798957109451294 77 1.9624133110046387 78 1.9452464580535889 79 1.9283857345581055 80 1.9118256568908691 81 1.895555019378662 82 1.8795545101165771 83 1.8638136386871338 84 1.8483275175094604 85 1.8330997228622437 86 1.8181283473968506 87 1.8034056425094604 88 1.7889187335968018 89 1.7746583223342896 90 1.7606290578842163 91 1.7468219995498657 92 1.7332323789596558 93 1.719851016998291 94 1.7066792249679565 95 1.6937110424041748 96 1.680941104888916 97 1.6683626174926758 98 1.6559748649597168 99 1.6437857151031494 100 1.6317881345748901 101 1.6199665069580078 102 1.6082994937896729 103 1.5968005657196045 104 1.5854676961898804 105 1.5743000507354736 106 1.5632870197296143 107 1.5524123907089233 108 1.5416890382766724 109 1.5311145782470703 110 1.5206801891326904 111 1.5103785991668701 112 1.5002166032791138 113 1.490191102027893 114 1.4802982807159424 115 1.4705349206924438 116 1.460896611213684 117 1.4513828754425049 118 1.4419926404953003 119 1.4327237606048584 120 1.4235708713531494 121 1.414528250694275 122 1.4056001901626587 123 1.396785855293274 124 1.3880841732025146 125 1.3794904947280884 126 1.3710025548934937 127 1.3626171350479126 128 1.3543349504470825 129 1.3461530208587646 130 1.3380697965621948 131 1.3300824165344238 132 1.3221898078918457 133 1.3143912553787231 134 1.3066872358322144 135 1.2990696430206299 136 1.2915362119674683 137 1.2840895652770996 138 1.2767281532287598 139 1.2694509029388428 140 1.2622557878494263 141 1.2551392316818237 142 1.248098373413086 143 1.241135597229004 144 1.2342497110366821 145 1.2274389266967773 146 1.2206966876983643 147 1.2140265703201294 148 1.2074280977249146 149 1.200900912284851 150 1.1944435834884644 151 1.1880548000335693 152 1.1817348003387451 153 1.1754802465438843 154 1.169293999671936 155 1.1631759405136108 156 1.1571210622787476 157 1.151126742362976 158 1.14518404006958 159 1.1393033266067505 160 1.1334810256958008 161 1.1277174949645996 162 1.1220113039016724 163 1.1163551807403564 164 1.1107507944107056 165 1.105201244354248 166 1.0997103452682495 167 1.0942801237106323 168 1.0889040231704712 169 1.083583950996399 170 1.078315258026123 171 1.0730972290039062 172 1.067928671836853 173 1.0628070831298828 174 1.0577337741851807 175 1.0527089834213257 176 1.047730565071106 177 1.042799472808838 178 1.0379137992858887 179 1.0330678224563599 180 1.0282684564590454 181 1.0235164165496826 182 1.0188075304031372 183 1.0141416788101196 184 1.0095181465148926 185 1.0049362182617188 186 1.000395655632019 187 0.9958955645561218 188 0.9914366006851196 189 0.9870172142982483 190 0.982637345790863 191 0.9782963991165161 192 0.9739935994148254 193 0.9697280526161194 194 0.9654982089996338 195 0.9613040685653687 196 0.9571464657783508 197 0.9530245065689087 198 0.9489384293556213 199 0.9448872208595276 200 0.9408681988716125 201 0.936881422996521 202 0.9329274296760559 203 0.9290053844451904 204 0.925116777420044 205 0.9212581515312195 206 0.9174230694770813 207 0.9136195182800293 208 0.9098472595214844 209 0.9061055183410645 210 0.90239417552948 211 0.898712694644928 212 0.8950610160827637 213 0.8914390206336975 214 0.8878458738327026 215 0.8842823505401611 216 0.8807358145713806 217 0.8772179484367371 218 0.8737277388572693 219 0.8702632188796997 220 0.8668240308761597 221 0.8634112477302551 222 0.86002516746521 223 0.8566659688949585 224 0.85333251953125 225 0.8500242829322815 226 0.8467413187026978 227 0.8434829115867615 228 0.8402493596076965 229 0.8370398879051208 230 0.833854615688324 231 0.8306929469108582 232 0.827552080154419 233 0.8244278430938721 234 0.8213253021240234 235 0.8182432651519775 236 0.8151854872703552 237 0.8121501803398132 238 0.8091368675231934 239 0.8061456680297852 240 0.8031761050224304 241 0.80022794008255 242 0.7973006963729858 243 0.7943944334983826 244 0.7915089726448059 245 0.7886437773704529 246 0.7857990860939026 247 0.7829744219779968 248 0.7801696062088013 249 0.777384340763092 250 0.7746186852455139 251 0.7718718647956848 252 0.7691439390182495 253 0.7664331793785095 254 0.7637409567832947 255 0.7610670924186707 256 0.7584114670753479 257 0.7557739615440369 258 0.7531542778015137 259 0.7505530118942261 260 0.7479691505432129 261 0.7454013824462891 262 0.7428488731384277 263 0.7403134703636169 264 0.7377946376800537 265 0.7352923154830933 266 0.7328044772148132 267 0.7303316593170166 268 0.7278748154640198 269 0.7254340648651123 270 0.7230089902877808 271 0.7205997705459595 272 0.7182057499885559 273 0.7158268094062805 274 0.7134631276130676 275 0.7111144661903381 276 0.7087805867195129 277 0.706461489200592 278 0.7041566967964172 279 0.7018659710884094 280 0.6995895504951477 281 0.6973273754119873 282 0.6950793266296387 283 0.6928450465202332 284 0.6906245350837708 285 0.6884176135063171 286 0.6862243413925171 287 0.684044599533081 288 0.681877851486206 289 0.6797241568565369 290 0.6775832176208496 291 0.6754552721977234 292 0.6733400225639343 293 0.6712375283241272 294 0.6691456437110901 295 0.6670605540275574 296 0.6649874448776245 297 0.6629267930984497 298 0.6608779430389404 299 0.6588414311408997 300 0.6568167805671692 301 0.6548037528991699 302 0.6528029441833496 303 0.6508134007453918 304 0.648834228515625 305 0.6468671560287476 306 0.6449111700057983 307 0.6429666876792908 308 0.6410335302352905 309 0.6391113996505737 310 0.6372001767158508 311 0.6352999210357666 312 0.6334100961685181 313 0.6315310001373291 314 0.6296621561050415 315 0.6278043389320374 316 0.6259567141532898 317 0.6241182684898376 318 0.6222867369651794 319 0.6204652786254883 320 0.6186535358428955 321 0.6168522834777832 322 0.6150606870651245 323 0.6132790446281433 324 0.61150723695755 325 0.6097429990768433 326 0.6079882979393005 327 0.6062430143356323 328 0.604507327079773 329 0.6027806997299194 330 0.6010634899139404 331 0.5993567109107971 332 0.5976606011390686 333 0.5959730744361877 334 0.5942966938018799 335 0.592631459236145 336 0.590974748134613 337 0.589325487613678 338 0.5876843929290771 339 0.5860518217086792 340 0.5844278335571289 341 0.5828127264976501 342 0.5812069177627563 343 0.5796093940734863 344 0.578019917011261 345 0.5764382481575012 346 0.5748651027679443 347 0.5732994079589844 348 0.5717419981956482 349 0.5701925754547119 350 0.5686507225036621 351 0.5671167373657227 352 0.5655908584594727 353 0.5640721321105957 354 0.56256103515625 355 0.5610572695732117 356 0.5595608949661255 357 0.5580719709396362 358 0.5565890073776245 359 0.5551137924194336 360 0.5536459684371948 361 0.5521852970123291 362 0.5507314801216125 363 0.5492850542068481 364 0.5478458404541016 365 0.5464138984680176 366 0.5449886918067932 367 0.5435706973075867 368 0.5421592593193054 369 0.5407543778419495 370 0.5393574237823486 371 0.5379711985588074 372 0.5365912318229675 373 0.5352166891098022 374 0.5338472127914429 375 0.5324841141700745 376 0.5311273336410522 377 0.5297768712043762 378 0.5284324288368225 379 0.5270943641662598 380 0.5257622003555298 381 0.5244361758232117 382 0.5231162309646606 383 0.5218020081520081 384 0.5204949378967285 385 0.5191943645477295 386 0.5178999304771423 387 0.516610324382782 388 0.5153262615203857 389 0.514048159122467 390 0.5127755403518677 391 0.5115087032318115 392 0.510247528553009 393 0.5089918375015259 394 0.5077416896820068 395 0.5064969062805176 396 0.5052579045295715 397 0.5040238499641418 398 0.5027949213981628 399 0.5015710592269897 400 0.5003527402877808 401 0.4991387724876404 402 0.49793052673339844 403 0.49672847986221313 404 0.49553149938583374 405 0.4943397045135498 406 0.49315300583839417 407 0.4919714331626892 408 0.4907943904399872 409 0.48962166905403137 410 0.4884537160396576 411 0.48729056119918823 412 0.48613253235816956 413 0.4849790930747986 414 0.4838304817676544 415 0.48268669843673706 416 0.48154768347740173 417 0.4804132282733917 418 0.47928348183631897 419 0.4781581461429596 420 0.47703754901885986 421 0.4759214520454407 422 0.47481003403663635 423 0.47370296716690063 424 0.4725983440876007 425 0.4714982807636261 426 0.4704027771949768 427 0.46931177377700806 428 0.4682251513004303 429 0.4671427607536316 430 0.4660649299621582 431 0.4649914503097534 432 0.4639223515987396 433 0.4628574252128601 434 0.4617968797683716 435 0.46074098348617554 436 0.459689199924469 437 0.4586414396762848 438 0.45759811997413635 439 0.4565587043762207 440 0.45552361011505127 441 0.45449256896972656 442 0.4534655213356018 443 0.4524424970149994 444 0.45142364501953125 445 0.4504084885120392 446 0.4493974447250366 447 0.44839024543762207 448 0.44738712906837463 449 0.4463876485824585 450 0.44539159536361694 451 0.4443994164466858 452 0.44341111183166504 453 0.44242650270462036 454 0.44144588708877563 455 0.4404689371585846 456 0.4394948482513428 457 0.43852463364601135 458 0.43755805492401123 459 0.43659508228302 460 0.4356358051300049 461 0.43468010425567627 462 0.4337283670902252 463 0.43278005719184875 464 0.4318353235721588 465 0.4308941066265106 466 0.4299563765525818 467 0.42902228236198425 468 0.4280916154384613 469 0.4271644651889801 470 0.42624062299728394 471 0.4253202974796295 472 0.42440328001976013 473 0.4234898090362549 474 0.42257949709892273 475 0.421672523021698 476 0.4207688570022583 477 0.4198683500289917 478 0.41897115111351013 479 0.41807663440704346 480 0.41718536615371704 481 0.4162973165512085 482 0.4154125154018402 483 0.41453102231025696 484 0.41365253925323486 485 0.41277727484703064 486 0.41190510988235474 487 0.41103610396385193 488 0.41017037630081177 489 0.4093076288700104 490 0.4084479808807373 491 0.40759146213531494 492 0.40673789381980896 493 0.4058874845504761 494 0.4050399959087372 495 0.4041954278945923 496 0.4033539593219757 497 0.40251532196998596 498 0.4016796350479126 499 0.4008469879627228 500 0.400017112493515 501 0.3991903066635132 502 0.3983662724494934 503 0.3975451588630676 504 0.39672714471817017 505 0.3959120512008667 506 0.39509981870651245 507 0.3942902386188507 508 0.3934839367866516 509 0.3926803469657898 510 0.3918794095516205 511 0.3910813629627228 512 0.39028578996658325 513 0.38949301838874817 514 0.38870301842689514 515 0.38791561126708984 516 0.38713082671165466 517 0.38634881377220154 518 0.38556939363479614 519 0.3847925662994385 520 0.3840184211730957 521 0.3832467794418335 522 0.38247784972190857 523 0.38171136379241943 524 0.3809475898742676 525 0.3801862299442291 526 0.37942740321159363 527 0.37867122888565063 528 0.37791767716407776 529 0.3771663308143616 530 0.3764175772666931 531 0.3756713569164276 532 0.3749275207519531 533 0.3741862177848816 534 0.37344735860824585 535 0.3727108836174011 536 0.37197694182395935 537 0.37124574184417725 538 0.37051692605018616 539 0.3697904646396637 540 0.36906641721725464 541 0.3683447241783142 542 0.36762523651123047 543 0.36690813302993774 544 0.3661934733390808 545 0.36548087000846863 546 0.3647707402706146 547 0.3640628755092621 548 0.36335721611976624 549 0.36265382170677185 550 0.3619528114795685 551 0.3612537384033203 552 0.3605571687221527 553 0.3598625659942627 554 0.35917040705680847 555 0.3584803342819214 556 0.35779252648353577 557 0.3571068048477173 558 0.35642334818840027 559 0.3557418882846832 560 0.35506269335746765 561 0.35438546538352966 562 0.353710412979126 563 0.3530370891094208 564 0.35236597061157227 565 0.3516969680786133 566 0.3510299623012543 567 0.35036501288414 568 0.34970200061798096 569 0.3490402102470398 570 0.34838053584098816 571 0.3477229177951813 572 0.34706732630729675 573 0.34641364216804504 574 0.34576213359832764 575 0.34511247277259827 576 0.3444649577140808 577 0.34381937980651855 578 0.34317582845687866 579 0.34253424406051636 580 0.3418945372104645 581 0.34125688672065735 582 0.3406212031841278 583 0.3399873375892639 584 0.3393557071685791 585 0.338725745677948 586 0.3380976617336273 587 0.33747154474258423 588 0.33684736490249634 589 0.3362250328063965 590 0.3356045186519623 591 0.33498600125312805 592 0.3343692123889923 593 0.33375415205955505 594 0.33314049243927 595 0.33252862095832825 596 0.3319186568260193 597 0.3313103914260864 598 0.3307040333747864 599 0.3300994634628296 600 0.32949671149253845 601 0.32889577746391296 602 0.3282965123653412 603 0.32769909501075745 604 0.32710346579551697 605 0.3265095353126526 606 0.32591742277145386 607 0.3253268897533417 608 0.3247380256652832 609 0.3241502046585083 610 0.32356417179107666 611 0.32297977805137634 612 0.3223971426486969 613 0.3218162953853607 614 0.3212369978427887 615 0.3206595480442047 616 0.32008370757102966 617 0.3195095658302307 618 0.3189369738101959 619 0.318366140127182 620 0.3177970349788666 621 0.31722941994667053 622 0.316663533449173 623 0.3160993456840515 624 0.31553658843040466 625 0.3149755597114563 626 0.3144153654575348 627 0.3138548731803894 628 0.3132960796356201 629 0.312738835811615 630 0.312183141708374 631 0.31162911653518677 632 0.31107667088508606 633 0.31052571535110474 634 0.30997610092163086 635 0.30942797660827637 636 0.3088814616203308 637 0.3083364963531494 638 0.30779314041137695 639 0.3072512745857239 640 0.3067108690738678 641 0.30617210268974304 642 0.3056347668170929 643 0.3050990104675293 644 0.3045649230480194 645 0.3040320575237274 646 0.30350086092948914 647 0.30297088623046875 648 0.3024422526359558 649 0.30191442370414734 650 0.30138808488845825 651 0.30086323618888855 652 0.30033981800079346 653 0.299817830324173 654 0.29929739236831665 655 0.29877838492393494 656 0.29826080799102783 657 0.2977446913719177 658 0.29722997546195984 659 0.2967166602611542 660 0.2962048351764679 661 0.29569441080093384 662 0.295185387134552 663 0.2946777641773224 664 0.2941715717315674 665 0.29366669058799744 666 0.29316312074661255 667 0.29266107082366943 668 0.29216039180755615 669 0.29166102409362793 670 0.29116299748420715 671 0.290666401386261 672 0.2901711165904999 673 0.2896771728992462 674 0.2891846001148224 675 0.2886933982372284 676 0.28820356726646423 677 0.28771504759788513 678 0.2872277796268463 679 0.28674182295799255 680 0.28625720739364624 681 0.285773903131485 682 0.2852921485900879 683 0.2848118543624878 684 0.2843327522277832 685 0.2838551998138428 686 0.28337860107421875 687 0.28290292620658875 688 0.28242799639701843 689 0.2819541394710541 690 0.28148168325424194 691 0.2810104191303253 692 0.28054022789001465 693 0.2800716459751129 694 0.2796040177345276 695 0.2791377305984497 696 0.2786727845668793 697 0.2782088816165924 698 0.2777462303638458 699 0.27728477120399475 700 0.2768246531486511 701 0.2763655483722687 702 0.2759076952934265 703 0.27545082569122314 704 0.2749953269958496 705 0.2745409905910492 706 0.2740877866744995 707 0.2736358940601349 708 0.27318498492240906 709 0.27273547649383545 710 0.27228716015815735 711 0.2718399167060852 712 0.2713938057422638 713 0.2709488272666931 714 0.27050501108169556 715 0.27006229758262634 716 0.26962071657180786 717 0.2691802978515625 718 0.26874107122421265 719 0.268302857875824 720 0.26786598563194275 721 0.2674299478530884 722 0.26699501276016235 723 0.2665612995624542 724 0.26612868905067444 725 0.2656972110271454 726 0.2652667760848999 727 0.2648375630378723 728 0.26440927386283875 729 0.263982355594635 730 0.2635563313961029 731 0.26313140988349915 732 0.26270776987075806 733 0.2622849643230438 734 0.2618633508682251 735 0.2614428400993347 736 0.26102331280708313 737 0.26060497760772705 738 0.26018744707107544 739 0.25977039337158203 740 0.2593544125556946 741 0.2589395344257355 742 0.2585256099700928 743 0.2581128776073456 744 0.25770118832588196 745 0.257290780544281 746 0.25688138604164124 747 0.25647300481796265 748 0.2560657560825348 749 0.2556595504283905 750 0.2552543580532074 751 0.25485020875930786 752 0.25444698333740234 753 0.25404489040374756 754 0.2536437511444092 755 0.2532435953617096 756 0.2528444826602936 757 0.25244635343551636 758 0.2520492374897003 759 0.2516530752182007 760 0.25125786662101746 761 0.2508637309074402 762 0.25047051906585693 763 0.2500782907009125 764 0.2496870458126068 765 0.24929681420326233 766 0.24890746176242828 767 0.2485191524028778 768 0.24813173711299896 769 0.24774526059627533 770 0.24735982716083527 771 0.24697533249855042 772 0.2465917468070984 773 0.24620908498764038 774 0.24582739174365997 775 0.24544666707515717 776 0.24506676197052002 777 0.24468792974948883 778 0.24431000649929047 779 0.24393302202224731 780 0.2435569167137146 781 0.2431817650794983 782 0.24280714988708496 783 0.2424321323633194 784 0.24205803871154785 785 0.24168488383293152 786 0.241312637925148 787 0.24094131588935852 788 0.2405707836151123 789 0.24020111560821533 790 0.23983235657215118 791 0.23946447670459747 792 0.2390974760055542 793 0.23873141407966614 794 0.23836618661880493 795 0.23800188302993774 796 0.2376384139060974 797 0.2372758835554123 798 0.23691418766975403 799 0.23655343055725098 800 0.23619335889816284 801 0.23583398759365082 802 0.23547561466693878 803 0.2351180762052536 804 0.23476144671440125 805 0.23440562188625336 806 0.2340506911277771 807 0.2336966097354889 808 0.23334330320358276 809 0.23299092054367065 810 0.23263929784297943 811 0.23228861391544342 812 0.23193864524364471 813 0.23158957064151764 814 0.2312413603067398 815 0.23089389503002167 816 0.2305472046136856 817 0.23020081222057343 818 0.22985512018203735 819 0.2295103222131729 820 0.2291664332151413 821 0.22882342338562012 822 0.2284812480211258 823 0.22813984751701355 824 0.22779929637908936 825 0.22745954990386963 826 0.22712060809135437 827 0.22678242623806 828 0.2264450341463089 829 0.22610844671726227 830 0.2257726937532425 831 0.22543774545192719 832 0.22510360181331635 833 0.22477015852928162 834 0.22443754971027374 835 0.22410567104816437 836 0.22377459704875946 837 0.22344429790973663 838 0.2231147140264511 839 0.22278596460819244 840 0.22245793044567108 841 0.2221306562423706 842 0.2218042016029358 843 0.22147847712039948 844 0.22115345299243927 845 0.2208293080329895 846 0.22050583362579346 847 0.22018328309059143 848 0.2198614776134491 849 0.21954035758972168 850 0.21922007203102112 851 0.21890050172805786 852 0.2185816466808319 853 0.21826350688934326 854 0.2179461419582367 855 0.21762950718402863 856 0.2173135131597519 857 0.21699830889701843 858 0.21668371558189392 859 0.21636976301670074 860 0.2160564661026001 861 0.21574383974075317 862 0.2154320776462555 863 0.21512089669704437 864 0.21481050550937653 865 0.2145007699728012 866 0.2141917645931244 867 0.2138834446668625 868 0.2135758399963379 869 0.21326890587806702 870 0.21296268701553345 871 0.2126571536064148 872 0.21235229074954987 873 0.21204814314842224 874 0.21174462139606476 875 0.21144187450408936 876 0.21113982796669006 877 0.21083839237689972 878 0.2105376124382019 879 0.2102375030517578 880 0.20993809401988983 881 0.20963941514492035 882 0.2093413919210434 883 0.209043949842453 884 0.20874719321727753 885 0.20845113694667816 886 0.2081557810306549 887 0.20786099135875702 888 0.20756688714027405 889 0.2072734236717224 890 0.20698067545890808 891 0.206688791513443 892 0.2063976228237152 893 0.20610706508159637 894 0.20581713318824768 895 0.20552785694599152 896 0.2052392065525055 897 0.2049512267112732 898 0.20466385781764984 899 0.20437712967395782 900 0.20409105718135834 901 0.2038055807352066 902 0.203520730137825 903 0.20323652029037476 904 0.20295295119285583 905 0.20266996324062347 906 0.20238761603832245 907 0.2021058350801468 908 0.20182473957538605 909 0.20154424011707306 910 0.20126426219940186 911 0.20098499953746796 912 0.20070627331733704 913 0.20042823255062103 914 0.20015071332454681 915 0.19987383484840393 916 0.1995975524187088 917 0.1993219256401062 918 0.19904685020446777 919 0.1987723708152771 920 0.19849847257137299 921 0.198225200176239 922 0.1979524940252304 923 0.19768035411834717 924 0.19740886986255646 925 0.19713793694972992 926 0.19686803221702576 927 0.19659921526908875 928 0.19633109867572784 929 0.19606339931488037 930 0.19579637050628662 931 0.19552987813949585 932 0.19526398181915283 933 0.1949986219406128 934 0.1947338581085205 935 0.1944696456193924 936 0.19420598447322845 937 0.19394290447235107 938 0.19368033111095428 939 0.19341830909252167 940 0.1931568831205368 941 0.1928960531949997 942 0.19263578951358795 943 0.19237612187862396 944 0.19211700558662415 945 0.19185851514339447 946 0.19160042703151703 947 0.19134299457073212 948 0.1910860240459442 949 0.19082963466644287 950 0.1905737668275833 951 0.19031842052936554 952 0.19006362557411194 953 0.18980936706066132 954 0.18955565989017487 955 0.18930241465568542 956 0.18904975056648254 957 0.18879757821559906 958 0.18854588270187378 959 0.18829473853111267 960 0.18804407119750977 961 0.18779391050338745 962 0.18754436075687408 963 0.187295600771904 964 0.18704718351364136 965 0.18679922819137573 966 0.18655185401439667 967 0.1863049566745758 968 0.18605859577655792 969 0.18581271171569824 970 0.18556730449199677 971 0.18532252311706543 972 0.18507833778858185 973 0.18483464419841766 974 0.18459144234657288 975 0.18434876203536987 976 0.18410657346248627 977 0.18386483192443848 978 0.18362365663051605 979 0.18338292837142944 980 0.18314272165298462 981 0.182902991771698 982 0.18266382813453674 983 0.1824250966310501 984 0.18218687176704407 985 0.1819491684436798 986 0.18171188235282898 987 0.18147514760494232 988 0.1812387853860855 989 0.18100300431251526 990 0.18076765537261963 991 0.1805328130722046 992 0.18029844760894775 993 0.18006452918052673 994 0.17983104288578033 995 0.1795981228351593 996 0.17936556041240692 997 0.1791335493326187 998 0.17890198528766632 999 0.17867091298103333 1000 0.17844027280807495 1001 0.17821010947227478 1002 0.17798036336898804 1003 0.17775122821331024 1004 0.17752258479595184 1005 0.17729438841342926 1006 0.17706671357154846 1007 0.1768394112586975 1008 0.17661258578300476 1009 0.17638623714447021 1010 0.1761602908372879 1011 0.175934836268425 1012 0.1757097989320755 1013 0.1754852533340454 1014 0.17526109516620636 1015 0.17503735423088074 1016 0.1748141199350357 1017 0.1745913177728653 1018 0.1743689626455307 1019 0.17414706945419312 1020 0.17392563819885254 1021 0.17370463907718658 1022 0.17348413169384003 1023 0.17326393723487854 1024 0.17304421961307526 1025 0.17282505333423615 1026 0.17260615527629852 1027 0.1723877340555191 1028 0.1721697598695755 1029 0.1719522327184677 1030 0.17173504829406738 1031 0.17151843011379242 1032 0.1713021695613861 1033 0.17108628153800964 1034 0.1708708554506302 1035 0.17065584659576416 1036 0.17044125497341156 1037 0.17022709548473358 1038 0.17001330852508545 1039 0.1698000133037567 1040 0.16958706080913544 1041 0.16937461495399475 1042 0.16916249692440033 1043 0.16895075142383575 1044 0.16873957216739655 1045 0.16852864623069763 1046 0.1683182269334793 1047 0.16810812056064606 1048 0.167898491024971 1049 0.1676892787218094 1050 0.16748040914535522 1051 0.16727200150489807 1052 0.167063906788826 1053 0.1668563187122345 1054 0.16664905846118927 1055 0.16644226014614105 1056 0.1662357896566391 1057 0.16602975130081177 1058 0.16582410037517548 1059 0.165618896484375 1060 0.1654140204191208 1061 0.1652095466852188 1062 0.16500544548034668 1063 0.16480176150798798 1064 0.16459845006465912 1065 0.16439560055732727 1066 0.1641930788755417 1067 0.16399094462394714 1068 0.16378919780254364 1069 0.16358785331249237 1070 0.16338680684566498 1071 0.1631862372159958 1072 0.16298598051071167 1073 0.16278617084026337 1074 0.16258670389652252 1075 0.16238759458065033 1076 0.16218891739845276 1077 0.16199055314064026 1078 0.1617925763130188 1079 0.16159503161907196 1080 0.1613977998495102 1081 0.16120091080665588 1082 0.16100440919399261 1083 0.16080829501152039 1084 0.16061246395111084 1085 0.1604166328907013 1086 0.16022120416164398 1087 0.1600261628627777 1088 0.15983138978481293 1089 0.15963706374168396 1090 0.15944314002990723 1091 0.1592494547367096 1092 0.15905626118183136 1093 0.15886341035366058 1094 0.15867087244987488 1095 0.15847866237163544 1096 0.1582869440317154 1097 0.15809547901153564 1098 0.15790443122386932 1099 0.15771366655826569 1100 0.15752333402633667 1101 0.15733331441879272 1102 0.157143697142601 1103 0.15695440769195557 1104 0.1567654311656952 1105 0.15657684206962585 1106 0.15638858079910278 1107 0.15620073676109314 1108 0.15601316094398499 1109 0.15582597255706787 1110 0.1556389033794403 1111 0.1554522067308426 1112 0.15526588261127472 1113 0.15507985651493073 1114 0.1548941731452942 1115 0.15470890700817108 1116 0.15452396869659424 1117 0.15433931350708008 1118 0.15415504574775696 1119 0.15397107601165771 1120 0.1537875086069107 1121 0.15360425412654877 1122 0.1534212827682495 1123 0.15323872864246368 1124 0.15305647253990173 1125 0.15287454426288605 1126 0.15269294381141663 1127 0.15251168608665466 1128 0.15233080089092255 1129 0.1521502286195755 1130 0.15196996927261353 1131 0.15179002285003662 1132 0.15161044895648956 1133 0.1514311581850052 1134 0.15125229954719543 1135 0.1510736644268036 1136 0.1508954018354416 1137 0.15071742236614227 1138 0.1505398452281952 1139 0.1503625214099884 1140 0.15018555521965027 1141 0.15000887215137482 1142 0.1498325765132904 1143 0.1496565043926239 1144 0.14948081970214844 1145 0.14930547773838043 1146 0.1491304337978363 1147 0.14895570278167725 1148 0.14878123998641968 1149 0.14860711991786957 1150 0.14843332767486572 1151 0.14825992286205292 1152 0.14808668196201324 1153 0.14791381359100342 1154 0.14774130284786224 1155 0.14756906032562256 1156 0.14739717543125153 1157 0.1472255438566208 1158 0.1470542550086975 1159 0.1468832641839981 1160 0.1467125117778778 1161 0.14654211699962616 1162 0.1463719755411148 1163 0.14620213210582733 1164 0.14603258669376373 1165 0.1458633542060852 1166 0.14569441974163055 1167 0.14552582800388336 1168 0.14535748958587646 1169 0.14518944919109344 1170 0.14502178132534027 1171 0.1448543220758438 1172 0.1446872353553772 1173 0.14452041685581207 1174 0.14435391128063202 1175 0.14418786764144897 1176 0.14402209222316742 1177 0.14385661482810974 1178 0.14369145035743713 1179 0.14352655410766602 1180 0.14336198568344116 1181 0.14319771528244019 1182 0.1430336982011795 1183 0.1428699493408203 1184 0.1427065134048462 1185 0.14254343509674072 1186 0.14238065481185913 1187 0.14221802353858948 1188 0.1420557200908661 1189 0.14189375936985016 1190 0.14173205196857452 1191 0.14157067239284515 1192 0.1414095163345337 1193 0.1412486582994461 1194 0.1410880982875824 1195 0.14092782139778137 1196 0.14076772332191467 1197 0.14060793817043304 1198 0.1404484063386917 1199 0.14028921723365784 1200 0.14013022184371948 1201 0.13997159898281097 1202 0.1398131549358368 1203 0.1396550089120865 1204 0.13949717581272125 1205 0.1393395960330963 1206 0.13918231427669525 1207 0.13902528584003448 1208 0.1388685405254364 1209 0.1387120485305786 1210 0.1385558396577835 1211 0.1383998841047287 1212 0.13824424147605896 1213 0.13808883726596832 1214 0.13793377578258514 1215 0.1377788931131363 1216 0.13762430846691132 1217 0.13746996223926544 1218 0.13731595873832703 1219 0.13716216385364532 1220 0.1370086520910263 1221 0.1368553787469864 1222 0.13670241832733154 1223 0.13654965162277222 1224 0.13639724254608154 1225 0.13624504208564758 1226 0.13609308004379272 1227 0.13594146072864532 1228 0.13579006493091583 1229 0.13563887774944305 1230 0.13548794388771057 1231 0.13533736765384674 1232 0.135187029838562 1233 0.13503684103488922 1234 0.13488703966140747 1235 0.13473738729953766 1236 0.1345881074666977 1237 0.13443899154663086 1238 0.1342901587486267 1239 0.13414162397384644 1240 0.1339932531118393 1241 0.13384521007537842 1242 0.13369734585285187 1243 0.13354985415935516 1244 0.1334024965763092 1245 0.13325542211532593 1246 0.13310864567756653 1247 0.13296210765838623 1248 0.13281574845314026 1249 0.13266970217227936 1250 0.13252387940883636 1251 0.13237830996513367 1252 0.13223296403884888 1253 0.13208791613578796 1254 0.13194309175014496 1255 0.13179850578308105 1256 0.13165414333343506 1257 0.13151007890701294 1258 0.13136617839336395 1259 0.13122263550758362 1260 0.13107924163341522 1261 0.13093607127666473 1262 0.1307932287454605 1263 0.1306505799293518 1264 0.1305081695318222 1265 0.1303660124540329 1266 0.13022403419017792 1267 0.1300821751356125 1268 0.12994055449962616 1269 0.12979915738105774 1270 0.12965798377990723 1271 0.1295170783996582 1272 0.1293763667345047 1273 0.12923593819141388 1274 0.12909570336341858 1275 0.12895573675632477 1276 0.12881596386432648 1277 0.12867645919322968 1278 0.12853717803955078 1279 0.1283981204032898 1280 0.1282593309879303 1281 0.12812073528766632 1282 0.12798242270946503 1283 0.12784431874752045 1284 0.1277063935995102 1285 0.127568781375885 1286 0.12743127346038818 1287 0.12729410827159882 1288 0.12715716660022736 1289 0.12702038884162903 1290 0.12688389420509338 1291 0.12674753367900848 1292 0.12661126255989075 1293 0.12647520005702972 1294 0.126339390873909 1295 0.12620379030704498 1296 0.12606842815876007 1297 0.12593327462673187 1298 0.12579837441444397 1299 0.1256636679172516 1300 0.1255291998386383 1301 0.12539489567279816 1302 0.12526090443134308 1303 0.12512709200382233 1304 0.12499348819255829 1305 0.12486009299755096 1306 0.12472695857286453 1307 0.12459396570920944 1308 0.12446130067110062 1309 0.12432881444692612 1310 0.12419652938842773 1311 0.12406444549560547 1312 0.12393259257078171 1313 0.12380097061395645 1314 0.1236695647239685 1315 0.12353835999965668 1316 0.12340737134218216 1317 0.12327660620212555 1318 0.12314607203006744 1319 0.12301567196846008 1320 0.12288554757833481 1321 0.12275562435388565 1322 0.12262595444917679 1323 0.12249641120433807 1324 0.12236712127923965 1325 0.12223801761865616 1326 0.12210913002490997 1327 0.12198052555322647 1328 0.12185252457857132 1329 0.12172474712133408 1330 0.12159716337919235 1331 0.12146978825330734 1332 0.12134263664484024 1333 0.12121567130088806 1334 0.1210889145731926 1335 0.12096235901117325 1336 0.12083601206541061 1337 0.1207098588347435 1338 0.1205839142203331 1339 0.12045816332101822 1340 0.12033262848854065 1341 0.1202072948217392 1342 0.12008214741945267 1343 0.11995719373226166 1344 0.11983244866132736 1345 0.11970794200897217 1346 0.11958358436822891 1347 0.11945943534374237 1348 0.11933547258377075 1349 0.11921171098947525 1350 0.11908816546201706 1351 0.1189647987484932 1352 0.11884165555238724 1353 0.11871868371963501 1354 0.11859589070081711 1355 0.11847332864999771 1356 0.11835097521543503 1357 0.11822876334190369 1358 0.11810675263404846 1359 0.11798498779535294 1360 0.11786338686943054 1361 0.11774194985628128 1362 0.11762074381113052 1363 0.11749971657991409 1364 0.11737888306379318 1365 0.11725825071334839 1366 0.11713778227567673 1367 0.11701751500368118 1368 0.11689744144678116 1369 0.11677756160497665 1370 0.11665784567594528 1371 0.11653835326433182 1372 0.11641902476549149 1373 0.11629988998174667 1374 0.11618093401193619 1375 0.11606216430664062 1376 0.11594359576702118 1377 0.11582519859075546 1378 0.11570696532726288 1379 0.11558897793292999 1380 0.11547113955020905 1381 0.11535345762968063 1382 0.11523600667715073 1383 0.11511873453855515 1384 0.1150016337633133 1385 0.11488468945026398 1386 0.11476796865463257 1387 0.11465141922235489 1388 0.11453505605459213 1389 0.11441881954669952 1390 0.11430282145738602 1391 0.11418697983026505 1392 0.11407133936882019 1393 0.11395584791898727 1394 0.11384056508541107 1395 0.1137254610657692 1396 0.11361052095890045 1397 0.11349573731422424 1398 0.11338115483522415 1399 0.11326676607131958 1400 0.11315250396728516 1401 0.11303848028182983 1402 0.11292459815740585 1403 0.1128108948469162 1404 0.11269736289978027 1405 0.11258402466773987 1406 0.11247087270021439 1407 0.11235783249139786 1408 0.11224502325057983 1409 0.11213236302137375 1410 0.11201989650726318 1411 0.11190757155418396 1412 0.11179544776678085 1413 0.11168348044157028 1414 0.11157166957855225 1415 0.11146008223295212 1416 0.11134861409664154 1417 0.11123731732368469 1418 0.11112622171640396 1419 0.11101529002189636 1420 0.1109045073390007 1421 0.11079391092061996 1422 0.11068347096443176 1423 0.11057321727275848 1424 0.11046311259269714 1425 0.11035320907831192 1426 0.11024343967437744 1427 0.1101338341832161 1428 0.11002441495656967 1429 0.10991514474153519 1430 0.10980602353811264 1431 0.10969708114862442 1432 0.10958831012248993 1433 0.10947973281145096 1434 0.10937126725912094 1435 0.10926298052072525 1436 0.10915490984916687 1437 0.10904694348573685 1438 0.10893915593624115 1439 0.10883153229951859 1440 0.10872406512498856 1441 0.10861678421497345 1442 0.10850962996482849 1443 0.10840266942977905 1444 0.10829587280750275 1445 0.1081891879439354 1446 0.10808269679546356 1447 0.10797636210918427 1448 0.1078702062368393 1449 0.10776418447494507 1450 0.10765834152698517 1451 0.10755262523889542 1452 0.10744712501764297 1453 0.1073417216539383 1454 0.10723649710416794 1455 0.10713144391775131 1456 0.10702652484178543 1457 0.10692178457975388 1458 0.10681717842817307 1459 0.10671275109052658 1460 0.10660844296216965 1461 0.10650433599948883 1462 0.10640034079551697 1463 0.10629652440547943 1464 0.10619286447763443 1465 0.10608939081430435 1466 0.10598602145910263 1467 0.10588280111551285 1468 0.1057797446846962 1469 0.10567683726549149 1470 0.10557413101196289 1471 0.10547152161598206 1472 0.10536909848451614 1473 0.10526682436466217 1474 0.10516467690467834 1475 0.10506269335746765 1476 0.10496088862419128 1477 0.10485922545194626 1478 0.10475768148899078 1479 0.10465629398822784 1480 0.10455509275197983 1481 0.10445396602153778 1482 0.10435308516025543 1483 0.10425227880477905 1484 0.1041516438126564 1485 0.10405115783214569 1486 0.10395081341266632 1487 0.10385064035654068 1488 0.10375059396028519 1489 0.10365073382854462 1490 0.10355096310377121 1491 0.10345136374235153 1492 0.10335192829370499 1493 0.1032525897026062 1494 0.10315343737602234 1495 0.10305443406105042 1496 0.10295553505420685 1497 0.10285680741071701 1498 0.10275823622941971 1499 0.10265979170799255 1500 0.10256149619817734 1501 0.10246330499649048 1502 0.10236532986164093 1503 0.10226747393608093 1504 0.10216976702213287 1505 0.10207217931747437 1506 0.1019747331738472 1507 0.10187742859125137 1508 0.10178026556968689 1509 0.10168324410915375 1510 0.10158638656139374 1511 0.10148965567350388 1512 0.10139306634664536 1513 0.10129660367965698 1514 0.10120029747486115 1515 0.10110414773225784 1516 0.10100807249546051 1517 0.1009121909737587 1518 0.10081644356250763 1519 0.10072082281112671 1520 0.10062536597251892 1521 0.10053001344203949 1522 0.1004347950220108 1523 0.10033977031707764 1524 0.10024480521678925 1525 0.10015002638101578 1526 0.10005535930395126 1527 0.09996084123849869 1528 0.09986648708581924 1529 0.09977219998836517 1530 0.09967811405658722 1531 0.09958413988351822 1532 0.09949029982089996 1533 0.09939657896757126 1534 0.09930300712585449 1535 0.09920957684516907 1536 0.0991162657737732 1537 0.09902310371398926 1538 0.09893004596233368 1539 0.09883716702461243 1540 0.09874437749385834 1541 0.09865174442529678 1542 0.09855923056602478 1543 0.09846687316894531 1544 0.0983746200799942 1545 0.09828250110149384 1546 0.09819051623344421 1547 0.09809868782758713 1548 0.0980069488286972 1549 0.09791538864374161 1550 0.09782389551401138 1551 0.09773258119821548 1552 0.09764137864112854 1553 0.09755028784275055 1554 0.0974591001868248 1555 0.09736804664134979 1556 0.09727711230516434 1557 0.09718629717826843 1558 0.09709559381008148 1559 0.09700504690408707 1560 0.09691460430622101 1561 0.09682430326938629 1562 0.09673413634300232 1563 0.0966440811753273 1564 0.09655417501926422 1565 0.0964643657207489 1566 0.09637469798326492 1567 0.0962851494550705 1568 0.09619574248790741 1569 0.09610645473003387 1570 0.09601729363203049 1571 0.09592825174331665 1572 0.09583933651447296 1573 0.09575054049491882 1574 0.09566189348697662 1575 0.09557335078716278 1576 0.09548492729663849 1577 0.09539663791656494 1578 0.09530849009752274 1579 0.09522047638893127 1580 0.09513253718614578 1581 0.09504476934671402 1582 0.09495709091424942 1583 0.09486954659223557 1584 0.09478212147951126 1585 0.0946948304772377 1586 0.09460766613483429 1587 0.09452063590288162 1588 0.09443371742963791 1589 0.09434691816568375 1590 0.09426026791334152 1591 0.09417371451854706 1592 0.09408729523420334 1593 0.09400097280740738 1594 0.09391479194164276 1595 0.0938287153840065 1596 0.09374275803565979 1597 0.09365694224834442 1598 0.093571238219738 1599 0.09348564594984055 1600 0.09340017288923264 1601 0.09331483393907547 1602 0.09322958439588547 1603 0.0931444764137268 1604 0.0930594950914383 1605 0.09297464042901993 1606 0.0928899273276329 1607 0.09280525892972946 1608 0.09272079914808273 1609 0.09263638406991959 1610 0.09255212545394897 1611 0.09246794879436493 1612 0.09238392114639282 1613 0.09229998290538788 1614 0.09221617132425308 1615 0.09213250130414963 1616 0.09204889833927155 1617 0.09196547418832779 1618 0.09188210219144821 1619 0.09179888665676117 1620 0.0917157530784607 1621 0.09163274616003036 1622 0.0915498435497284 1623 0.09146708250045776 1624 0.0913844108581543 1625 0.09130187332630157 1626 0.0912194475531578 1627 0.09113714098930359 1628 0.09105493128299713 1629 0.09097281843423843 1630 0.09089084714651108 1631 0.09080890566110611 1632 0.09072693437337875 1633 0.09064508974552155 1634 0.0905633419752121 1635 0.090481698513031 1636 0.09040015935897827 1637 0.09031878411769867 1638 0.09023749083280563 1639 0.09015630930662155 1640 0.09007523208856583 1641 0.08999425172805786 1642 0.08991342037916183 1643 0.08983268588781357 1644 0.08975204080343246 1645 0.08967151492834091 1646 0.08959110826253891 1647 0.08951077610254288 1648 0.08943060040473938 1649 0.08935051411390305 1650 0.08927052468061447 1651 0.08919064700603485 1652 0.08911088854074478 1653 0.08903125673532486 1654 0.08895169943571091 1655 0.0888722613453865 1656 0.08879294991493225 1657 0.08871372789144516 1658 0.08863460272550583 1659 0.08855560421943665 1660 0.08847669512033463 1661 0.08839784562587738 1662 0.08831913769245148 1663 0.08824051171541214 1664 0.08816199749708176 1665 0.08808359503746033 1666 0.08800531923770905 1667 0.08792711049318314 1668 0.08784902840852737 1669 0.08777104318141937 1670 0.08769319206476212 1671 0.0876154825091362 1672 0.08753781020641327 1673 0.08746029436588287 1674 0.08738285303115845 1675 0.08730556815862656 1676 0.08722832798957825 1677 0.0871511921286583 1678 0.08707418292760849 1679 0.08699724823236465 1680 0.08692044764757156 1681 0.08684378862380981 1682 0.08676714450120926 1683 0.08669066429138184 1684 0.08661424368619919 1685 0.08653797209262848 1686 0.08646176755428314 1687 0.08638568967580795 1688 0.08630971610546112 1689 0.08623381704092026 1690 0.08615804463624954 1691 0.0860823318362236 1692 0.086006760597229 1693 0.08593124151229858 1694 0.08585585653781891 1695 0.085780568420887 1696 0.08570535480976105 1697 0.08563025295734406 1698 0.08555526286363602 1699 0.08548037707805634 1700 0.08540556579828262 1701 0.08533086627721786 1702 0.08525626361370087 1703 0.08518175780773163 1704 0.08510735630989075 1705 0.08503304421901703 1706 0.08495887368917465 1707 0.08488474786281586 1708 0.08481074124574661 1709 0.08473682403564453 1710 0.084663026034832 1711 0.08458928018808365 1712 0.08451566845178604 1713 0.0844421461224556 1714 0.08436871320009232 1715 0.084295354783535 1716 0.08422215282917023 1717 0.08414900302886963 1718 0.08407595008611679 1719 0.0840030089020729 1720 0.08393016457557678 1721 0.08385739475488663 1722 0.08378473669290543 1723 0.08371218293905258 1724 0.08363966643810272 1725 0.0835673063993454 1726 0.08349502831697464 1727 0.08342280983924866 1728 0.08335065841674805 1729 0.08327868580818176 1730 0.08320675045251846 1731 0.08313492685556412 1732 0.08306317776441574 1733 0.08299154788255692 1734 0.08291999995708466 1735 0.08284854888916016 1736 0.08277717232704163 1737 0.08270590752363205 1738 0.08263473212718964 1739 0.08256365358829498 1740 0.0824926570057869 1741 0.08242180198431015 1742 0.08235099911689758 1743 0.08228025585412979 1744 0.08220963925123215 1745 0.08213911205530167 1746 0.08206868916749954 1747 0.0819983184337616 1748 0.0819280818104744 1749 0.08185790479183197 1750 0.0817878395318985 1751 0.08171787112951279 1752 0.08164796978235245 1753 0.08157817274332047 1754 0.08150846511125565 1755 0.08143884688615799 1756 0.08136928826570511 1757 0.08129972964525223 1758 0.0812302827835083 1759 0.08116088807582855 1760 0.08109156787395477 1761 0.08102238178253174 1762 0.08095327764749527 1763 0.08088422566652298 1764 0.08081533014774323 1765 0.08074649423360825 1766 0.08067770302295685 1767 0.08060906082391739 1768 0.0805404856801033 1769 0.08047199249267578 1770 0.08040358871221542 1771 0.08033527433872223 1772 0.0802670419216156 1773 0.08019893616437912 1774 0.08013089001178741 1775 0.08006291836500168 1776 0.0799950510263443 1777 0.07992725819349289 1778 0.07985953986644745 1779 0.07979193329811096 1780 0.07972441613674164 1781 0.07965697348117828 1782 0.07958962023258209 1783 0.07952237874269485 1784 0.0794551819562912 1785 0.0793880894780159 1786 0.07932109385728836 1787 0.07925417274236679 1788 0.07918731123209 1789 0.07912059128284454 1790 0.07905389368534088 1791 0.07898733764886856 1792 0.07892082631587982 1793 0.07885441929101944 1794 0.07878809422254562 1795 0.07872184365987778 1796 0.07865568995475769 1797 0.07858961075544357 1798 0.07852363586425781 1799 0.07845771312713623 1800 0.0783919095993042 1801 0.07832615822553635 1802 0.07826051861047745 1803 0.07819492369890213 1804 0.07812945544719696 1805 0.07806403934955597 1806 0.07799869775772095 1807 0.07793348282575607 1808 0.07786831259727478 1809 0.07780326902866364 1810 0.07773824036121368 1811 0.07767333835363388 1812 0.07760851085186005 1813 0.07754376530647278 1814 0.07747910171747208 1815 0.07741452008485794 1816 0.07735003530979156 1817 0.07728560268878937 1818 0.07722128182649612 1819 0.07715706527233124 1820 0.07709291577339172 1821 0.07702881842851639 1822 0.07696482539176941 1823 0.0769009068608284 1824 0.07683706283569336 1825 0.07677330821752548 1826 0.07670962810516357 1827 0.07664602249860764 1828 0.07658252120018005 1829 0.07651905715465546 1830 0.07645576447248459 1831 0.07639254629611969 1832 0.07632942497730255 1833 0.07626636326313019 1834 0.0762033686041832 1835 0.07614046335220337 1836 0.07607761770486832 1837 0.07601486146450043 1838 0.07595221698284149 1839 0.07588960975408554 1840 0.07582708448171616 1841 0.07576467096805573 1842 0.07570230215787888 1843 0.07564002275466919 1844 0.07557782530784607 1845 0.07551569491624832 1846 0.07545364648103714 1847 0.07539165765047073 1848 0.07532975822687149 1849 0.07526794075965881 1850 0.0752062126994133 1851 0.07514452934265137 1852 0.0750829428434372 1853 0.07502143830060959 1854 0.07496000081300735 1855 0.07489863783121109 1856 0.07483737170696259 1857 0.07477617263793945 1858 0.0747150108218193 1859 0.07465395331382751 1860 0.07459298521280289 1861 0.07453206181526184 1862 0.07447121292352676 1863 0.07441044598817825 1864 0.07434975355863571 1865 0.07428912818431854 1866 0.07422858476638794 1867 0.07416810095310211 1868 0.07410772889852524 1869 0.07404737919569016 1870 0.07398713380098343 1871 0.07392696291208267 1872 0.0738668441772461 1873 0.07380683720111847 1874 0.07374686747789383 1875 0.07368697226047516 1876 0.07362718135118484 1877 0.07356742024421692 1878 0.07350776344537735 1879 0.07344818860292435 1880 0.07338867336511612 1881 0.07332924008369446 1882 0.07326986640691757 1883 0.07321056723594666 1884 0.0731513574719429 1885 0.07309219986200333 1886 0.0730331540107727 1887 0.07297413051128387 1888 0.07291519641876221 1889 0.0728563442826271 1890 0.07279753684997559 1891 0.07273881882429123 1892 0.07268017530441284 1893 0.07262159138917923 1894 0.07256310433149338 1895 0.07250466197729111 1896 0.0724463015794754 1897 0.07238800078630447 1898 0.07232978194952011 1899 0.07227162271738052 1900 0.07221353054046631 1901 0.07215555757284164 1902 0.07209757715463638 1903 0.07203973084688187 1904 0.07198192179203033 1905 0.07192417979240417 1906 0.07186652719974518 1907 0.07180892676115036 1908 0.07175140082836151 1909 0.07169394195079803 1910 0.07163655757904053 1911 0.07157924771308899 1912 0.07152201980352402 1913 0.07146485149860382 1914 0.07140778005123138 1915 0.07135072350502014 1916 0.07129377871751785 1917 0.07123686373233795 1918 0.071180060505867 1919 0.07112328708171844 1920 0.07106661051511765 1921 0.07100997120141983 1922 0.07095342129468918 1923 0.0708969458937645 1924 0.07084052264690399 1925 0.07078415900468826 1926 0.07072789967060089 1927 0.0706716775894165 1928 0.0706155076622963 1929 0.07055944949388504 1930 0.07050342112779617 1931 0.07044748961925507 1932 0.07039161026477814 1933 0.0703357681632042 1934 0.07027990370988846 1935 0.0702241063117981 1936 0.07016836851835251 1937 0.07011271268129349 1938 0.07005712389945984 1939 0.07000158727169037 1940 0.06994611024856567 1941 0.06989070773124695 1942 0.06983539462089539 1943 0.06978011876344681 1944 0.069724902510643 1945 0.06966976821422577 1946 0.06961469352245331 1947 0.06955970078706741 1948 0.0695047453045845 1949 0.06944988667964935 1950 0.06939507275819778 1951 0.0693403109908104 1952 0.06928564608097076 1953 0.0692310482263565 1954 0.06917648762464523 1955 0.06912198662757874 1956 0.0690675750374794 1957 0.06901322305202484 1958 0.06895890831947327 1959 0.06890471279621124 1960 0.06885052472352982 1961 0.06879642605781555 1962 0.06874239444732666 1963 0.06868844479322433 1964 0.0686345174908638 1965 0.06858064979314804 1966 0.06852687150239944 1967 0.06847316026687622 1968 0.06841950118541718 1969 0.06836588680744171 1970 0.06831236183643341 1971 0.06825891137123108 1972 0.06820549070835114 1973 0.06815215945243835 1974 0.06809888780117035 1975 0.06804566830396652 1976 0.06799252331256866 1977 0.06793942302465439 1978 0.06788638979196548 1979 0.06783339381217957 1980 0.067780502140522 1981 0.06772767752408981 1982 0.06767487525939941 1983 0.06762216240167618 1984 0.06756949424743652 1985 0.06751693785190582 1986 0.06746440380811691 1987 0.06741190701723099 1988 0.06735949963331223 1989 0.06730712950229645 1990 0.06725485622882843 1991 0.0672026053071022 1992 0.06715045869350433 1993 0.06709831953048706 1994 0.06704625487327576 1995 0.06699429452419281 1996 0.06694235652685165 1997 0.06689047068357468 1998 0.06683865189552307 1999 0.06678692251443863 2000 0.06673522293567657 2001 0.0666835755109787 2002 0.06663201749324799 2003 0.06658049672842026 2004 0.0665290430188179 2005 0.06647765636444092 2006 0.06642626225948334 2007 0.06637495011091232 2008 0.06632369756698608 2009 0.06627251952886581 2010 0.06622138619422913 2011 0.06617029011249542 2012 0.06611927598714828 2013 0.06606832146644592 2014 0.06601741164922714 2015 0.06596659868955612 2016 0.0659157931804657 2017 0.06586505472660065 2018 0.06581439822912216 2019 0.06576378643512726 2020 0.06571321934461594 2021 0.06566271185874939 2022 0.06561229377985 2023 0.06556190550327301 2024 0.06551158428192139 2025 0.06546132266521454 2026 0.06541110575199127 2027 0.06536094844341278 2028 0.06531085073947906 2029 0.06526082754135132 2030 0.06521083414554596 2031 0.06516091525554657 2032 0.06511103361845016 2033 0.06506123393774033 2034 0.06501150876283646 2035 0.06496177613735199 2036 0.06491214036941528 2037 0.06486254930496216 2038 0.0648130252957344 2039 0.06476354598999023 2040 0.06471412628889084 2041 0.06466478109359741 2042 0.06461548805236816 2043 0.0645662471652031 2044 0.06451703608036041 2045 0.0644678920507431 2046 0.06441880762577057 2047 0.064369797706604 2048 0.06432081758975983 2049 0.06427189707756042 2050 0.0642230361700058 2051 0.06417424976825714 2052 0.06412550061941147 2053 0.06407680362462997 2054 0.06402815878391266 2055 0.06397957354784012 2056 0.06393106281757355 2057 0.06388258188962936 2058 0.06383416801691055 2059 0.06378579139709473 2060 0.06373748183250427 2061 0.0636892318725586 2062 0.0636410191655159 2063 0.06359288841485977 2064 0.06354479491710663 2065 0.06349676102399826 2066 0.06344877183437347 2067 0.06340081989765167 2068 0.06335297226905823 2069 0.06330515444278717 2070 0.06325738877058029 2071 0.0632096603512764 2072 0.06316199898719788 2073 0.06311440467834473 2074 0.06306684017181396 2075 0.06301935762166977 2076 0.06297190487384796 2077 0.06292451173067093 2078 0.06287717819213867 2079 0.0628298968076706 2080 0.06278263032436371 2081 0.06273546814918518 2082 0.06268833577632904 2083 0.06264127045869827 2084 0.06259430199861526 2085 0.06254753470420837 2086 0.06250081211328506 2087 0.062454137951135635 2088 0.062407538294792175 2089 0.0623609684407711 2090 0.06231443211436272 2091 0.06226780638098717 2092 0.062221262603998184 2093 0.06217479333281517 2094 0.062128372490406036 2095 0.06208197399973869 2096 0.062035657465457916 2097 0.06198937073349953 2098 0.06194315478205681 2099 0.061896976083517075 2100 0.061850856989622116 2101 0.06180478632450104 2102 0.061758749186992645 2103 0.061712779104709625 2104 0.06166686490178108 2105 0.06162097305059433 2106 0.061575133353471756 2107 0.06152936443686485 2108 0.06148362159729004 2109 0.061437930911779404 2110 0.06139231100678444 2111 0.06134672835469246 2112 0.06130118668079376 2113 0.061255715787410736 2114 0.0612102672457695 2115 0.06116488203406334 2116 0.06111956387758255 2117 0.06107426434755325 2118 0.06102903187274933 2119 0.06098382547497749 2120 0.06093870475888252 2121 0.060893602669239044 2122 0.060848575085401535 2123 0.060803573578596115 2124 0.06075861304998398 2125 0.0607137456536293 2126 0.060668881982564926 2127 0.06062408164143562 2128 0.0605793334543705 2129 0.06053464487195015 2130 0.06048998609185219 2131 0.0604453943669796 2132 0.060400836169719696 2133 0.06035632640123367 2134 0.060311876237392426 2135 0.06026746332645416 2136 0.060223110020160675 2137 0.06017880514264107 2138 0.06013454124331474 2139 0.0600903294980526 2140 0.060046155005693436 2141 0.06000203266739845 2142 0.059957969933748245 2143 0.059913940727710724 2144 0.05986996367573738 2145 0.05982603877782822 2146 0.059782158583402634 2147 0.05973831191658974 2148 0.059694547206163406 2149 0.05965080112218857 2150 0.05960711091756821 2151 0.05956345796585083 2152 0.059519875794649124 2153 0.05947631597518921 2154 0.059432804584503174 2155 0.059389349073171616 2156 0.05934593454003334 2157 0.059302572160959244 2158 0.05925925821065903 2159 0.05921598896384239 2160 0.05917276069521904 2161 0.05912959203124046 2162 0.059086453169584274 2163 0.05904337391257286 2164 0.05900033563375473 2165 0.05895734205842018 2166 0.05891440063714981 2167 0.05887151136994362 2168 0.05882866308093071 2169 0.05878584831953049 2170 0.05874308571219444 2171 0.05870036408305168 2172 0.0586576908826828 2173 0.05861508101224899 2174 0.05857248976826668 2175 0.05852996185421944 2176 0.05848746746778488 2177 0.0584450401365757 2178 0.058402642607688904 2179 0.058360304683446884 2180 0.05831798538565636 2181 0.058275725692510605 2182 0.05823351442813873 2183 0.05819135159254074 2184 0.05814922973513603 2185 0.058107148855924606 2186 0.05806512385606766 2187 0.05802313610911369 2188 0.05798118934035301 2189 0.057939283549785614 2190 0.057897429913282394 2191 0.05785563215613365 2192 0.057813867926597595 2193 0.057772137224674225 2194 0.05773045867681503 2195 0.05768883228302002 2196 0.057647235691547394 2197 0.05760570615530014 2198 0.05756419524550438 2199 0.057522740215063095 2200 0.057481322437524796 2201 0.05743996053934097 2202 0.05739864334464073 2203 0.057357363402843475 2204 0.05731611326336861 2205 0.05727492272853851 2206 0.057233776897192 2207 0.057192668318748474 2208 0.057151615619659424 2209 0.057110581547021866 2210 0.05706961080431938 2211 0.05702868476510048 2212 0.056987784802913666 2213 0.05694693699479103 2214 0.056906141340732574 2215 0.056865375488996506 2216 0.05682464316487312 2217 0.05678397789597511 2218 0.05674334615468979 2219 0.056702759116888046 2220 0.05666220933198929 2221 0.056621719151735306 2222 0.05658124014735222 2223 0.05654080584645271 2224 0.05650044232606888 2225 0.056460101157426834 2226 0.05641980469226837 2227 0.056379545480012894 2228 0.05633935332298279 2229 0.05629918724298477 2230 0.05625906214118004 2231 0.056218985468149185 2232 0.05617895349860191 2233 0.05613894760608673 2234 0.05609899014234543 2235 0.05605907365679741 2236 0.05601920187473297 2237 0.055979374796152115 2238 0.05593958497047424 2239 0.055899836122989655 2240 0.05586010590195656 2241 0.05582045018672943 2242 0.0557808056473732 2243 0.055741190910339355 2244 0.055701613426208496 2245 0.055662088096141815 2246 0.05562259629368782 2247 0.055583126842975616 2248 0.055543724447488785 2249 0.05550434812903404 2250 0.055465005338191986 2251 0.05542571097612381 2252 0.055386461317539215 2253 0.0553472563624382 2254 0.05530809238553047 2255 0.05526895448565483 2256 0.05522988364100456 2257 0.055190809071063995 2258 0.055151816457509995 2259 0.05511284992098808 2260 0.05507391691207886 2261 0.05503503233194351 2262 0.05499619245529175 2263 0.054957374930381775 2264 0.05491860583424568 2265 0.05487988516688347 2266 0.054841212928295135 2267 0.05480256304144859 2268 0.054763954132795334 2269 0.0547252893447876 2270 0.054686471819877625 2271 0.05464768782258034 2272 0.054608963429927826 2273 0.054570261389017105 2274 0.054531604051589966 2275 0.05449299514293671 2276 0.05445442348718643 2277 0.05441589280962944 2278 0.054377391934394836 2279 0.05433893948793411 2280 0.054300520569086075 2281 0.05426214635372162 2282 0.05422382056713104 2283 0.05418551340699196 2284 0.05414726585149765 2285 0.05410904809832573 2286 0.05407087132334709 2287 0.054032739251852036 2288 0.05399463325738907 2289 0.05395657196640968 2290 0.05391855165362358 2291 0.05388057231903076 2292 0.05384262278676033 2293 0.05380474030971527 2294 0.05376685410737991 2295 0.053729042410850525 2296 0.053691256791353226 2297 0.05365350469946861 2298 0.05361579731106758 2299 0.05357813090085983 2300 0.05354049801826477 2301 0.05350291728973389 2302 0.05346536263823509 2303 0.05342784896492958 2304 0.05339037999510765 2305 0.05335293337702751 2306 0.05331555753946304 2307 0.05327818915247917 2308 0.053240858018398285 2309 0.05320359021425247 2310 0.05316634103655815 2311 0.053129132837057114 2312 0.05309196561574936 2313 0.053054843097925186 2314 0.053017761558294296 2315 0.0529807023704052 2316 0.052943699061870575 2317 0.05290672183036804 2318 0.052869781851768494 2319 0.05283288285136223 2320 0.05279601737856865 2321 0.052759211510419846 2322 0.05272240564227104 2323 0.052685655653476715 2324 0.05264895781874657 2325 0.05261228606104851 2326 0.05257565155625343 2327 0.05253905430436134 2328 0.05250249058008194 2329 0.05246596410870552 2330 0.05242948606610298 2331 0.05239303782582283 2332 0.05235663428902626 2333 0.05232024937868118 2334 0.052283916622400284 2335 0.05224761366844177 2336 0.052211351692676544 2337 0.052175119519233704 2338 0.05213890224695206 2339 0.05210274085402489 2340 0.052066605538129807 2341 0.05203051492571831 2342 0.0519944466650486 2343 0.05195842310786247 2344 0.051922447979450226 2345 0.051886510103940964 2346 0.05185059458017349 2347 0.05181471258401871 2348 0.0517788864672184 2349 0.05174308270215988 2350 0.05170730873942375 2351 0.0516715832054615 2352 0.05163589492440224 2353 0.05160023272037506 2354 0.05156461521983147 2355 0.05152903124690056 2356 0.051493484526872635 2357 0.051457975059747696 2358 0.05142248794436455 2359 0.05138704925775528 2360 0.0513516440987587 2361 0.0513162799179554 2362 0.05128094553947449 2363 0.05124564468860626 2364 0.05121038109064102 2365 0.05117515102028847 2366 0.0511399507522583 2367 0.051104795187711716 2368 0.05106968432664871 2369 0.051034603267908096 2370 0.05099954828619957 2371 0.05096454173326492 2372 0.05092955753207207 2373 0.05089461803436279 2374 0.05085970088839531 2375 0.05082482844591141 2376 0.05078998953104019 2377 0.05075518414378166 2378 0.050720419734716415 2379 0.05068567767739296 2380 0.05065099149942398 2381 0.0506163090467453 2382 0.050581689924001694 2383 0.05054708570241928 2384 0.05051251873373985 2385 0.0504780150949955 2386 0.05044351890683174 2387 0.050409067422151566 2388 0.05037463456392288 2389 0.050340261310338974 2390 0.05030589550733566 2391 0.05027158185839653 2392 0.05023728683590889 2393 0.050203047692775726 2394 0.05016881972551346 2395 0.050134651362895966 2396 0.05010049790143967 2397 0.05006638169288635 2398 0.05003230646252632 2399 0.049998264759778976 2400 0.049964237958192825 2401 0.04993026703596115 2402 0.04989632964134216 2403 0.04986241087317467 2404 0.049828533083200455 2405 0.04979468137025833 2406 0.049760885536670685 2407 0.04972708970308304 2408 0.049693357199430466 2409 0.04965965822339058 2410 0.049625977873802185 2411 0.049592338502407074 2412 0.049558717757463455 2413 0.04952514171600342 2414 0.049491602927446365 2415 0.049458097666502 2416 0.04942462593317032 2417 0.04939119145274162 2418 0.049357760697603226 2419 0.049324389547109604 2420 0.04929105564951897 2421 0.049257759004831314 2422 0.04922446608543396 2423 0.049191225320100784 2424 0.0491579994559288 2425 0.049124825745821 2426 0.04909168556332588 2427 0.049058567732572556 2428 0.04902549460530281 2429 0.04899244010448456 2430 0.048959411680698395 2431 0.04892643541097641 2432 0.04889349266886711 2433 0.048860568553209305 2434 0.04882769286632538 2435 0.048794809728860855 2436 0.04876202344894409 2437 0.04872921109199524 2438 0.04869646951556206 2439 0.04866374284029007 2440 0.04863104596734047 2441 0.048598386347293854 2442 0.04856575280427933 2443 0.04853314906358719 2444 0.04850059375166893 2445 0.04846806824207306 2446 0.04843556508421898 2447 0.048403095453977585 2448 0.048370663076639175 2449 0.04833825305104256 2450 0.04830586537718773 2451 0.04827352985739708 2452 0.04824121668934822 2453 0.048208944499492645 2454 0.04817669466137886 2455 0.048144470900297165 2456 0.04811227694153786 2457 0.04808012396097183 2458 0.04804801195859909 2459 0.04801591485738754 2460 0.04798385128378868 2461 0.047951821237802505 2462 0.047919824719429016 2463 0.047887858003377914 2464 0.0478559210896492 2465 0.04782402515411377 2466 0.047792136669158936 2467 0.04776029288768768 2468 0.04772849380970001 2469 0.04769670218229294 2470 0.047664958983659744 2471 0.04763323813676834 2472 0.047601547092199326 2473 0.047569893300533295 2474 0.04753825068473816 2475 0.047506656497716904 2476 0.04747509956359863 2477 0.04744357615709305 2478 0.04741206765174866 2479 0.047380588948726654 2480 0.04734913632273674 2481 0.047317732125520706 2482 0.047286342829465866 2483 0.04725499823689461 2484 0.04722368344664574 2485 0.04719240218400955 2486 0.0471612922847271 2487 0.04713021218776703 2488 0.047099169343709946 2489 0.04706813395023346 2490 0.04703715816140175 2491 0.04700620472431183 2492 0.046975281089544296 2493 0.04694436863064766 2494 0.046913500875234604 2495 0.046882666647434235 2496 0.04685184732079506 2497 0.04682106152176857 2498 0.04679032415151596 2499 0.046759601682424545
import matplotlib.pyplot as plt
plt.plot(range(epochs), aggregated_losses)
plt.ylabel('Loss')
plt.xlabel('epoch')
plt.show
<function matplotlib.pyplot.show(*args, **kw)>
Forecast based on the model¶
- substitute the same equations that were in the model
- The following loss result shows the last model sequence
- Loss shows how much the model is wrong (loss = sum of error squares) after the last learning sequence
Prognoza na podstawie modelu
- podstawiamy te same równania, które były w modelu
- Poniższy wynik loss pokazuje ostatnią sekwencje modelu
- Loss pokazuuje ile myli się model (loss = suma kwadratu błedów) po ostatniej sekwencji uczenia się
with torch.no_grad():
y_pred = model(X)
loss = (y_pred - y).pow(2).sum()
print(f'Loss train_set: {loss:.8f}')
Loss train_set: 0.04672889
Ponieważ ustaliliśmy, że nasza warstwa wyjściowa będzie zawierać 1 neuron, każda prognoza będzie zawierać 1 wartości. Przykładowo pierwsze 5 przewidywanych wartości wygląda następująco:
y_pred[:5]
tensor([[0.0297], [0.0404], [0.0731], [0.0552], [0.0586]])
We save the whole model¶
Zapisujemy cały model
torch.save(model,'/home/wojciech/Pulpit/7/byk12.pb')
We play the whole model¶
Odtwarzamy cały model
KOT = torch.load('/home/wojciech/Pulpit/7/byk12.pb')
KOT.eval()
Sequential( (0): Linear(in_features=11, out_features=30, bias=True) (1): ReLU() (2): Linear(in_features=30, out_features=1, bias=True) )
By substituting other independent variables, you can get a vector of output variables¶
We choose a random record from the tensor
Podstawiając inne zmienne niezależne można uzyskać wektor zmiennych wyjściowych
Wybieramy sobie jakąś losowy rekord z tensora
X_exp = X[85]
X_exp
tensor([ 0.1112, 0.9693, 1.1518, -2.1961, -1.8163, -1.4758, 0.1856, -0.5823, 0.6798, 1.2684, -1.2157])
y_exp = y[85]
y_exp
tensor([0.0429])
y_pred_exp = model(X_exp)
y_pred_exp
tensor([0.0459], grad_fn=<AddBackward0>)
y_pred*100
tensor([[2.9664], [4.0416], [7.3108], [5.5216], [5.8579], [4.8767], [5.6226], [5.9540], [6.6332], [8.8765], [2.3783], [7.1672], [6.3292], [3.3638], [5.9914], [6.0794], [5.7204], [2.7975], [6.6604], [4.9272], [4.8879], [2.9091], [5.4933], [2.5811], [7.4032], [5.1133], [4.7074], [5.6793], [4.5719], [5.7311], [3.2888], [2.8930], [5.0066], [6.1134], [3.6609], [5.4406], [5.9087], [7.8294], [3.7849], [5.3835], [6.4967], [5.9825], [6.5347], [5.6162], [3.9004], [7.9095], [6.4070], [3.0974], [3.9098], [6.2177], [4.9921], [4.4564], [5.3692], [3.4037], [6.1061], [6.3973], [5.5695], [5.7126], [7.7393], [4.9747], [6.4765], [6.3071], [5.9212], [7.6323], [7.9976], [9.0414], [2.4912], [5.4853], [4.2362], [5.4228], [6.1679], [4.9260], [6.7854], [6.1889], [4.3402], [6.1307], [5.5957], [5.6962], [4.7096], [5.1419], [6.2473], [5.1711], [6.6281], [5.3054], [3.7138], [4.5884], [5.4899], [2.9835], [6.5399], [5.1095], [5.4376], [6.6325], [6.2240], [4.9002], [4.2162], [3.9430], [5.5380], [3.6677], [6.1445], [8.3954], [6.9688], [4.8948], [3.3532], [5.0904], [5.2565], [7.3518], [5.6310], [5.7561], [6.2047], [6.9834], [5.3382], [4.8129], [2.7476], [5.3832], [4.9981], [7.3488], [4.7036], [4.1798], [2.0787], [7.5565], [4.4558], [5.4520], [2.0349], [6.9208], [6.9492], [6.1634], [5.5123], [3.5621], [5.1587], [7.2254], [4.1461], [5.9688], [5.4470], [3.6854], [7.8049], [8.2269], [5.1573], [6.7360], [2.7912], [4.2884], [7.4852], [4.0624], [6.2779], [4.2037], [4.8331], [4.4547], [2.5030], [3.9659], [6.7515], [8.3830], [8.5129], [6.7651], [5.5284], [6.9194], [3.9624], [3.1702], [4.0884], [5.7610], [3.8812], [3.5756], [6.2141], [5.5166], [5.1329], [3.7041], [5.9317], [5.4580], [6.7207], [6.8466], [1.9617], [5.9478], [4.9075], [6.9502], [4.4676], [5.1748], [6.4262], [5.2580], [2.4653], [6.7099], [4.6664], [3.9866], [1.8624], [4.7833], [4.1117], [6.8131], [4.9969], [5.3558], [4.6633], [6.5276], [2.5698], [3.7701], [3.2941], [6.6634], [3.1562], [3.2309], [6.1113], [5.4087], [6.2778], [5.9426], [4.0700], [6.0296], [7.3920], [3.3884], [6.3151], [5.7413], [3.1239], [2.6905], [6.2215], [5.0392], [1.9744], [6.9342], [3.1153], [4.8829], [5.4011], [5.3954], [4.7339], [7.5059], [4.7983], [5.3758], [5.7488], [4.1503], [5.7822], [7.5587], [5.9593], [3.7387], [5.9640], [4.5946], [4.3619], [7.1376], [3.8642], [6.3577], [6.8040], [4.3509], [5.7255], [5.1782], [4.2615], [3.5781], [6.5557], [4.8018], [6.8300], [5.3526], [2.2285], [3.4770], [6.1449], [4.1859], [6.1908], [3.3807], [5.7225], [7.8827], [6.7356], [5.4064], [3.6626], [4.4502], [3.1978], [3.2464], [4.6420], [7.0870], [7.4764], [5.7756], [3.0390], [4.7756], [4.7188], [8.1182], [4.5416], [5.2138], [7.8055], [5.7732], [5.9122], [5.0187], [5.9651], [5.4615], [7.7498], [7.3046], [5.7209], [5.3261], [1.9999], [8.1639], [3.2365], [5.5175], [5.0731], [5.5036], [6.7409], [7.4398], [6.5612], [2.6310], [3.9384], [4.9992], [3.9782], [7.9541], [4.8564], [3.5855], [7.4833], [6.9492], [7.9667], [2.6751], [7.4556], [3.4723], [3.2654], [7.4916], [3.7939], [7.5347], [4.5226], [4.3283], [6.2889], [1.4205], [5.1865], [7.3664], [7.0705], [8.6856], [7.4042], [6.0064], [6.5478], [4.3864], [4.2359], [4.1898], [4.4255], [3.1806], [5.1247], [5.7540], [5.0307], [6.2750], [4.3838], [5.5981], [6.7580], [7.8894], [7.4011], [6.7692], [6.6447], [6.8985], [6.5622], [5.9753], [3.9478], [4.7453], [3.8296], [3.8648], [6.5571], [5.2697], [4.6606], [2.7551], [5.1647], [4.3981], [7.3970], [3.8195], [4.6106], [6.0730], [4.6144], [5.9978], [5.7666], [3.7945], [7.3946], [4.8461], [4.0483], [5.8546], [7.7021], [5.1070], [7.0071], [5.9592], [6.6253], [6.2787], [4.6751], [8.3041], [6.5435], [4.9875], [3.4187], [7.9358], [5.2559], [1.9815], [6.7741], [3.6748], [2.8120], [5.5128], [5.5181], [6.6587], [7.0592], [4.0100], [4.7017], [6.3343], [7.7795], [6.1473], [5.9915], [4.6752], [6.1017], [4.5512], [6.6151], [5.8156], [4.7634], [4.9142], [6.5041], [5.0676], [5.8448], [6.1546], [4.1216], [3.4364], [5.0902], [6.3010], [7.2167], [5.9601], [3.1539], [4.6667], [4.7068], [5.4171], [5.0741], [4.1897], [6.1055], [7.8151], [6.7116], [4.2754], [5.9288], [5.7566], [5.6452], [4.2433], [5.2321], [6.9282], [8.3004], [7.1942], [7.5665], [3.9228], [5.0916], [6.3853], [8.9201], [4.0894], [5.0578], [5.4298], [5.3945], [6.8777], [6.0253], [4.6407], [5.5930], [6.0872], [7.4040], [5.4820], [4.1105], [7.4705], [6.6388], [6.4490], [4.5783], [6.1771], [6.6494], [4.7957], [5.9815], [3.7596], [6.2458], [2.6563], [6.3460], [5.0271], [2.7388], [8.7505], [9.3717], [2.4806], [6.5091], [4.3372], [4.2973], [4.3720], [3.3563], [5.2429], [4.9201], [5.2773], [4.9870], [4.1075], [3.6772], [6.9761], [5.8244], [4.7021], [5.5312], [3.6516], [5.1328], [5.7880], [4.0189], [4.9219], [3.9931]])
df.loc[85,'Happiness Score']
5.007
(y_exp - y_pred_exp).pow(2).sum()
tensor(8.7851e-06, grad_fn=<SumBackward0>)
r2_score_compute¶
def r2_score_compute_fn(y_pred, y):
e = torch.sum((y_pred-y.mean()) ** 2) / torch.sum((y - y.mean()) ** 2)
return 1 - e.item()
r2_score_compute_fn(y, y_pred)
0.4201156497001648
a = pd.DataFrame(y)
b = pd.DataFrame(y_pred)