Stacking in Trident 1.1 [Stroke_Prediction.csv]

090520201852

Someone recently told me that I do not write enough so I will write:
It is very nice when we have AUC of 85%. Especially cool when we have AUC test and AUC) train at the same level.
Unfortunately, this model is suitable for the trash and needs to be improved a bit. Now this is the model who was supposed to find who had a stroke and said no one had a stroke. Because there were 1-2% people with stroke, so the model is right in 98%. This is a trap – you are interested in stroke stroke. So I did oversampling to balance the resulting populations 0 and 1. After oversampling, those with stroke were the same as those without stroke. the break point (red) on the ROC curve has changed. Unfortunately, somebody got used to creating meta variables on the second level of stasking. So I started experimenting with thrashold settings. I invite you to follow my efforts.

I got so hooked that I started to contribute to stackoverflow!

https://stackoverflow.com/questions/31417487/sklearn-logisticregression-and-changing-the-default-threshold-for-classification/61644649#61644649

In [1]:
# https://github.com/dawidkopczyk/blog/blob/master/stacking.py

# Classification Assessment
def Classification_Assessment(model ,Xtrain, ytrain, Xtest, ytest):
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import metrics
    from sklearn.metrics import classification_report, confusion_matrix
    from sklearn.metrics import confusion_matrix, log_loss, auc, roc_curve, roc_auc_score, recall_score, precision_recall_curve
    from sklearn.metrics import make_scorer, precision_score, fbeta_score, f1_score, classification_report
    
    import scikitplot as skplt
    from plot_metric.functions import BinaryClassification
    from sklearn.metrics import precision_recall_curve

       
    print("Recall Training data:     ", np.round(recall_score(ytrain, model.predict(Xtrain)), decimals=4))
    print("Precision Training data:  ", np.round(precision_score(ytrain, model.predict(Xtrain)), decimals=4))
    print("----------------------------------------------------------------------")
    print("Recall Test data:         ", np.round(recall_score(ytest, model.predict(Xtest)), decimals=4)) 
    print("Precision Test data:      ", np.round(precision_score(ytest, model.predict(Xtest)), decimals=4))
    print("----------------------------------------------------------------------")
    print("Confusion Matrix Test data")
    print(confusion_matrix(ytest, model.predict(Xtest)))
    print("----------------------------------------------------------------------")
    print('Valuation for test data only:')
    print(classification_report(ytest, model.predict(Xtest)))
    
    ## ----------AUC-----------------------------------------
     
    print('---------------------') 
    AUC_train_1 = metrics.roc_auc_score(ytrain,model.predict_proba(Xtrain)[:,1])
    print('AUC_train: AUC_test_1 = metrics.roc_auc_score(ytest,model.predict_proba(Xtest)[:,1])
    print('AUC_test:  print('---------------------')    
    
    print("Accuracy Training data:     ", np.round(accuracy_score(ytrain, model.predict(Xtrain)), decimals=4))
    print("Accuracy Test data:         ", np.round(accuracy_score(ytest, model.predict(Xtest)), decimals=4)) 
    print("----------------------------------------------------------------------")
    print('Valuation for test data only:')

    y_probas1 = model.predict_proba(Xtest)[:,1]
    y_probas2 = model.predict_proba(Xtest)

### ---plot_roc_curve--------------------------------------------------------
    plt.figure(figsize=(13,4))

    plt.subplot(1, 2, 1)
    bc = BinaryClassification(ytest, y_probas1, labels=["Class 1", "Class 2"])
    bc.plot_roc_curve() 


### --------precision_recall_curve------------------------------------------

    plt.subplot(1, 2, 2)
    precision, recall, thresholds = precision_recall_curve(ytest, y_probas1)

    plt.plot(recall, precision, marker='.', label=model)
    plt.title('Precision recall curve')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.legend(loc=(-0.30, -0.6))
    plt.show()

## ----------plot_roc-----------------------------------------

    skplt.metrics.plot_roc(ytest, y_probas2)
In [2]:
# General
import numpy as np

# Models
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB 

# Utilities
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split, KFold
from sklearn.metrics import accuracy_score
from copy import copy as make_copy

from sklearn.metrics import roc_auc_score
from sklearn.metrics import precision_score
from sklearn.metrics import accuracy_score
from plot_metric.functions import BinaryClassification
import matplotlib.pyplot as plt
from sklearn import metrics
from sklearn.metrics import classification_report, confusion_matrix


import warnings   
SEED = 2018
warnings.filterwarnings("ignore")
In [3]:
import pandas as pd

df = pd.read_csv('/home/wojciech/Pulpit/1/Stroke_Prediction.csv')
print(df.shape)
df.head(2)
(43400, 12)
Out[3]:
ID Gender Age_In_Days Hypertension Heart_Disease Ever_Married Type_Of_Work Residence Avg_Glucose BMI Smoking_Status Stroke
0 31153 Male 1104.0 0 0 No children Rural 95.12 18.0 NaN 0
1 30650 Male 21204.0 1 0 Yes Private Urban 87.96 39.2 never smoked 0
In [4]:
import numpy as np

a,b = df.shape     #<- ile mamy kolumn
b


print('DISCRETE FUNCTIONS CODED')
print('------------------------')
for i in range(1,b):
    i = df.columns[i]
    f = df[i].dtypes
    if f == np.object:
        print(i,"---",f)   
    
        if f == np.object:
        
            df[i] = pd.Categorical(df[i]).codes
        
            continue
DISCRETE FUNCTIONS CODED
------------------------
Gender --- object
Ever_Married --- object
Type_Of_Work --- object
Residence --- object
Smoking_Status --- object
In [5]:
del df['ID']
df = df.dropna(how='any')
df.isnull().sum()
Out[5]:
Gender            0
Age_In_Days       0
Hypertension      0
Heart_Disease     0
Ever_Married      0
Type_Of_Work      0
Residence         0
Avg_Glucose       0
BMI               0
Smoking_Status    0
Stroke            0
dtype: int64
In [6]:
df.shape
Out[6]:
(41938, 11)
In [7]:
y = df['Stroke']
X = df.drop('Stroke', axis=1)
In [8]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=123,stratify=y)
# Jeżeli się rzuca wtedy wycinamy stratify=y.
In [9]:
y_train.value_counts(dropna = False, normalize=True).plot(kind='pie',title='Before oversampling')
Out[9]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f7f7a30b850>
In [10]:
X_train = X_train.values
X_test = X_test.values
y_train = y_train.values
y_test = y_test.values

Define Base (level 0) and Stacking (level 1) estimators

In [11]:
base_clf = [LogisticRegression(), RandomForestClassifier(), ### jakie model chce trenować
            AdaBoostClassifier(), GaussianNB()]

stck_clf = LogisticRegression()  ### układanie w stos odbyw się za pomocą LogisticRegression
#stck_clf = RandomForestClassifier()

Evaluate Base estimators separately

In [12]:
## Wstępna ocena bazowych estymatorów (modeli)
from sklearn.metrics import roc_auc_score
from sklearn.metrics import precision_score
from sklearn.metrics import accuracy_score

for t in base_clf:
    
    # Set seed
    if 'kot' in t.get_params().keys():  # pobierz z modeli, które chce trenować kluczowe hiperparametry 
        t.set_params(random_state=SEED)  ## Podaje parametry PODSTAWOWE modelu, doyślne, fabryczne!!
                                           ## to znaczy, że jak podam specjalny hiperparament w modelu to będzie on uwzględniony             
    
    # Fit model
    t.fit(X_train, y_train) # Podstawiam do kolejnego modelu z pętli
    
    # Predict
    y_pred = t.predict(X_test)   #predykcja kolejnego modelu z pętli
    
    # Valuation
    acc = accuracy_score(y_test, y_pred)
    #pre = precision_score(y_test, y_pred,average = 'macro')
    #auc = roc_auc_score(y_test, y_pred)
    
    print('{} accuracy: {:.2f}plt.figure(figsize=(7,3))
    y_probas1 = t.predict_proba(X_test)[:,1]
    bc= BinaryClassification(y_test, y_probas1, labels=[t.__class__.__name__]).plot_roc_curve()
    plt.show()
    AUC_train_1 = metrics.roc_auc_score(y_train,t.predict_proba(X_train)[:,1])
    print('AUC_train: AUC_test_1 = metrics.roc_auc_score(y_test,t.predict_proba(X_test)[:,1])
    print('AUC_test:  print(classification_report(y_test, t.predict(X_test)))
    print('===============================================================')
LogisticRegression accuracy: 98.43%
AUC_train: 0.690
AUC_test:  0.688
              precision    recall  f1-score   support

           0       0.98      1.00      0.99      8259
           1       0.00      0.00      0.00       129

    accuracy                           0.98      8388
   macro avg       0.49      0.50      0.50      8388
weighted avg       0.97      0.98      0.98      8388

===============================================================
RandomForestClassifier accuracy: 98.46%
AUC_train: 1.000
AUC_test:  0.803
              precision    recall  f1-score   support

           0       0.98      1.00      0.99      8259
           1       0.00      0.00      0.00       129

    accuracy                           0.98      8388
   macro avg       0.49      0.50      0.50      8388
weighted avg       0.97      0.98      0.98      8388

===============================================================
AdaBoostClassifier accuracy: 98.46%
AUC_train: 0.871
AUC_test:  0.856
              precision    recall  f1-score   support

           0       0.98      1.00      0.99      8259
           1       0.00      0.00      0.00       129

    accuracy                           0.98      8388
   macro avg       0.49      0.50      0.50      8388
weighted avg       0.97      0.98      0.98      8388

===============================================================
GaussianNB accuracy: 94.93%
AUC_train: 0.840
AUC_test:  0.847
              precision    recall  f1-score   support

           0       0.99      0.96      0.97      8259
           1       0.07      0.19      0.10       129

    accuracy                           0.95      8388
   macro avg       0.53      0.57      0.54      8388
weighted avg       0.97      0.95      0.96      8388

===============================================================

Create Hold Out predictions (meta-features)

In [13]:
def hold_out_predict(clf, X, y, cv):
        
    """Performing cross validation hold out predictions for stacking"""
    
    # USTALA WYMIARY
    n_classes = len(np.unique(y)) # Sprawdza jakie są klasy: len(np.unique(y)) = 2
    meta_features = np.zeros((X.shape[0], n_classes)) ## BUDUJE SZKIELEK WEKTORA META CECH 
                                         # Buduje wektor o ilości wierszy 10000 i 2 KOLUMN
                                         # składający się z samych zer
    n_splits = cv.get_n_splits(X, y)     # Zwraca liczbę iteracji podziału w walidatorze krzyżowym.= 4
    
    # Loop over folds
    print("Starting hold out prediction with {} splits for {}.".format(n_splits, clf.__class__.__name__))
    for train_idx, hold_out_idx in cv.split(X, y): 
        
        # Split data
        X_train = X[train_idx]                # Podmienia zmienne X_train w pętli
        y_train = y[train_idx]                # Podmienia zmienne y_train w pętli
        X_hold_out = X[hold_out_idx]
        
        # Fit estimator to K-1 parts and predict on hold out part
        est = make_copy(clf)
        est.fit(X_train, y_train)
        y_hold_out_pred = est.predict_proba(X_hold_out)
        
        # Fill in meta features
        meta_features[hold_out_idx] = y_hold_out_pred

    return meta_features     # meta wymiar to wektor 1000 na 2 kolumny składający się z samych zer

Create meta-features for training data

In [14]:
# Define 4-fold CV     ## można dać dowolną liczbę faud
cv = KFold(n_splits=6, random_state=SEED)    ## wpisuje ilości podziałow w cross-validation

# Loop over classifier to produce meta features
meta_train = []
for clf in base_clf:
    
    # Create hold out predictions for a classifier
    meta_train_clf = hold_out_predict(clf, X_train, y_train, cv)
    
    # Remove redundant column
    meta_train_clf = np.delete(meta_train_clf, 0, axis=1).ravel()
    
    # Gather meta training data
    meta_train.append(meta_train_clf)
    
meta_train = np.array(meta_train).T 
Starting hold out prediction with 6 splits for LogisticRegression.
Starting hold out prediction with 6 splits for RandomForestClassifier.
Starting hold out prediction with 6 splits for AdaBoostClassifier.
Starting hold out prediction with 6 splits for GaussianNB.

Create meta-features for testing data

In [15]:
meta_test = []
for i in base_clf:
    
    # Create hold out predictions for a classifier
    i.fit(X_train, y_train)
    meta_test_clf = i.predict_proba(X_test)
    
    # Remove redundant column
    meta_test_clf = np.delete(meta_test_clf, 0, axis=1).ravel()
    
    # Gather meta training data
    meta_test.append(meta_test_clf)
    
meta_test = np.array(meta_test).T 

Predict on Stacking Classifier

In [16]:
# Set seed
if 'random_state' in stck_clf.get_params().keys():
    stck_clf.set_params(random_state=SEED)

# Optional (Add original features to meta)
original_flag = False
if original_flag:
    meta_train = np.concatenate((meta_train, X_train), axis=1)
    meta_test = np.concatenate((meta_test, X_test), axis=1)

# Fit model
stck_clf.fit(meta_train, y_train)

# Predict
y_pred = stck_clf.predict(meta_test)

# Calculate accuracy
acc = accuracy_score(y_test, y_pred)
pre = precision_score(y_test, y_pred,average = 'macro')
auc = roc_auc_score(y_test, y_pred)

print('Stacking {} AUC: {:.4f}
Stacking LogisticRegression AUC: 98.4621%
In [17]:
Classification_Assessment(stck_clf ,meta_train, y_train, meta_test, y_test)
Recall Training data:      0.0
Precision Training data:   0.0
----------------------------------------------------------------------
Recall Test data:          0.0
Precision Test data:       0.0
----------------------------------------------------------------------
Confusion Matrix Test data
[[8259    0]
 [ 129    0]]
----------------------------------------------------------------------
Valuation for test data only:
              precision    recall  f1-score   support

           0       0.98      1.00      0.99      8259
           1       0.00      0.00      0.00       129

    accuracy                           0.98      8388
   macro avg       0.49      0.50      0.50      8388
weighted avg       0.97      0.98      0.98      8388

---------------------
AUC_train: 0.840
AUC_test:  0.846
---------------------
Accuracy Training data:      0.9847
Accuracy Test data:          0.9846
----------------------------------------------------------------------
Valuation for test data only:

OVERSAMPLING

First, a thick definition of homemade
In [18]:
def oversampling(ytrain, Xtrain):
    import matplotlib.pyplot as plt
    
    global Xtrain_OV
    global ytrain_OV

    calss1 = np.round((sum(ytrain == 1)/(sum(ytrain == 0)+sum(ytrain == 1))),decimals=2)*100
    calss0 = np.round((sum(ytrain == 0)/(sum(ytrain == 0)+sum(ytrain == 1))),decimals=2)*100
    
    print("y = 0: ", sum(ytrain == 0),'-------',calss0,
    print("y = 1: ", sum(ytrain == 1),'-------',calss1,
    print('--------------------------------------------------------')
    
    ytrain.value_counts(dropna = False, normalize=True).plot(kind='pie',title='Before oversampling')
    plt.show
    print()
    
    Proporcja = sum(ytrain == 0) / sum(ytrain == 1)
    Proporcja = np.round(Proporcja, decimals=0)
    Proporcja = Proporcja.astype(int)
       
    ytrain_OV = pd.concat([ytrain[ytrain==1]] * Proporcja, axis = 0) 
    Xtrain_OV = pd.concat([Xtrain.loc[ytrain==1, :]] * Proporcja, axis = 0)
    
    ytrain_OV = pd.concat([ytrain, ytrain_OV], axis = 0).reset_index(drop = True)
    Xtrain_OV = pd.concat([Xtrain, Xtrain_OV], axis = 0).reset_index(drop = True)
    
    Xtrain_OV = pd.DataFrame(Xtrain_OV)
    ytrain_OV = pd.DataFrame(ytrain_OV)
    

    
    print("Before oversampling Xtrain:     ", Xtrain.shape)
    print("Before oversampling ytrain:     ", ytrain.shape)
    print('--------------------------------------------------------')
    print("After oversampling Xtrain_OV:  ", Xtrain_OV.shape)
    print("After oversampling ytrain_OV:  ", ytrain_OV.shape)
    print('--------------------------------------------------------')
    
    
    ax = plt.subplot(1, 2, 1)
    ytrain.value_counts(dropna = False, normalize=True).plot(kind='pie',title='Before oversampling')
    plt.show
    
       
    kot = pd.concat([ytrain[ytrain==1]] * Proporcja, axis = 0)
    kot = pd.concat([ytrain, kot], axis = 0).reset_index(drop = True)
    ax = plt.subplot(1, 2, 2)
    kot.value_counts(dropna = False, normalize=True).plot(kind='pie',title='After oversampling')
    plt.show

Reads the data again.

In [19]:
y = df['Stroke']
X = df.drop('Stroke', axis=1)
In [20]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=123,stratify=y)
# Jeżeli się rzuca wtedy wycinamy stratify=y.

I’m working on a matrix.

In [21]:
oversampling(y_train, X_train)
y = 0:  33036 ------- 98.0
y = 1:  514 ------- 2.0
--------------------------------------------------------

Before oversampling Xtrain:      (33550, 10)
Before oversampling ytrain:      (33550,)
--------------------------------------------------------
After oversampling Xtrain_OV:   (66446, 10)
After oversampling ytrain_OV:   (66446, 1)
--------------------------------------------------------
In [22]:
X_train = Xtrain_OV.values
X_test = X_test.values
y_train = ytrain_OV.values
y_test = y_test.values

Define Base (level 0) and Stacking (level 1) estimators

In [23]:
base_clf = [LogisticRegression(), RandomForestClassifier(), ### jakie model chce trenować
            AdaBoostClassifier(), GaussianNB()]

stck_OV = LogisticRegression()  ### układanie w stos odbyw się za pomocą LogisticRegression
#stck_clf = RandomForestClassifier()

Evaluate Base estimators separately

In [24]:
## Wstępna ocena bazowych estymatorów (modeli)
from sklearn.metrics import roc_auc_score
from sklearn.metrics import precision_score
from sklearn.metrics import accuracy_score

for t in base_clf:
    
    # Set seed
    if 'kot' in t.get_params().keys():  # pobierz z modeli, które chce trenować kluczowe hiperparametry 
        t.set_params(random_state=SEED)  ## Podaje parametry PODSTAWOWE modelu, doyślne, fabryczne!!
                                           ## to znaczy, że jak podam specjalny hiperparament w modelu to będzie on uwzględniony             
    
    # Fit model
    t.fit(X_train, y_train) # Podstawiam do kolejnego modelu z pętli
    
    # Predict
    y_pred = t.predict(X_test)   #predykcja kolejnego modelu z pętli
    
    # Valuation
    acc = accuracy_score(y_test, y_pred)
    #pre = precision_score(y_test, y_pred,average = 'macro')
    #auc = roc_auc_score(y_test, y_pred)
    
    print('{} accuracy: {:.2f}plt.figure(figsize=(7,3))
    y_probas1 = t.predict_proba(X_test)[:,1]
    bc= BinaryClassification(y_test, y_probas1, labels=[t.__class__.__name__]).plot_roc_curve()
    plt.show()
    AUC_train_1 = metrics.roc_auc_score(y_train,t.predict_proba(X_train)[:,1])
    print('AUC_train: AUC_test_1 = metrics.roc_auc_score(y_test,t.predict_proba(X_test)[:,1])
    print('AUC_test:  print(classification_report(y_test, t.predict(X_test)))
    print('===============================================================')
LogisticRegression accuracy: 67.26%
AUC_train: 0.817
AUC_test:  0.819
              precision    recall  f1-score   support

           0       1.00      0.67      0.80      8259
           1       0.04      0.83      0.07       129

    accuracy                           0.67      8388
   macro avg       0.52      0.75      0.44      8388
weighted avg       0.98      0.67      0.79      8388

===============================================================
RandomForestClassifier accuracy: 98.39%
AUC_train: 1.000
AUC_test:  0.775
              precision    recall  f1-score   support

           0       0.98      1.00      0.99      8259
           1       0.00      0.00      0.00       129

    accuracy                           0.98      8388
   macro avg       0.49      0.50      0.50      8388
weighted avg       0.97      0.98      0.98      8388

===============================================================
AdaBoostClassifier accuracy: 70.68%
AUC_train: 0.871
AUC_test:  0.849
              precision    recall  f1-score   support

           0       1.00      0.70      0.83      8259
           1       0.04      0.84      0.08       129

    accuracy                           0.71      8388
   macro avg       0.52      0.77      0.45      8388
weighted avg       0.98      0.71      0.81      8388

===============================================================
GaussianNB accuracy: 71.15%
AUC_train: 0.840
AUC_test:  0.847
              precision    recall  f1-score   support

           0       1.00      0.71      0.83      8259
           1       0.04      0.84      0.08       129

    accuracy                           0.71      8388
   macro avg       0.52      0.77      0.46      8388
weighted avg       0.98      0.71      0.82      8388

===============================================================

Create Hold Out predictions (meta-features)

In [25]:
def hold_out_predict(clf, X, y, cv):
        
    """Performing cross validation hold out predictions for stacking"""
    
    # USTALA WYMIARY
    n_classes = len(np.unique(y)) # Sprawdza jakie są klasy: len(np.unique(y)) = 2
    meta_features = np.zeros((X.shape[0], n_classes)) ## BUDUJE SZKIELEK WEKTORA META CECH 
                                         # Buduje wektor o ilości wierszy 10000 i 2 KOLUMN
                                         # składający się z samych zer
    n_splits = cv.get_n_splits(X, y)     # Zwraca liczbę iteracji podziału w walidatorze krzyżowym.= 4
    
    # Loop over folds
    print("Starting hold out prediction with {} splits for {}.".format(n_splits, clf.__class__.__name__))
    for train_idx, hold_out_idx in cv.split(X, y): 
        
        # Split data
        X_train = X[train_idx]                # Podmienia zmienne X_train w pętli
        y_train = y[train_idx]                # Podmienia zmienne y_train w pętli
        X_hold_out = X[hold_out_idx]
        
        # Fit estimator to K-1 parts and predict on hold out part
        est = make_copy(clf)
        est.fit(X_train, y_train)
        y_hold_out_pred = est.predict_proba(X_hold_out)
        
        # Fill in meta features
        meta_features[hold_out_idx] = y_hold_out_pred

    return meta_features     # meta wymiar to wektor 1000 na 2 kolumny składający się z samych zer

Create meta-features for training data

In [26]:
# Define 4-fold CV     ## można dać dowolną liczbę faud
cv = KFold(n_splits=6, random_state=SEED)    ## wpisuje ilości podziałow w cross-validation

# Loop over classifier to produce meta features
meta_train = []
for clf in base_clf:
    
    # Create hold out predictions for a classifier
    meta_train_clf = hold_out_predict(clf, X_train, y_train, cv)
    
    # Remove redundant column
    meta_train_clf = np.delete(meta_train_clf, 0, axis=1).ravel()
    
    # Gather meta training data
    meta_train.append(meta_train_clf)
    
meta_train = np.array(meta_train).T 
Starting hold out prediction with 6 splits for LogisticRegression.
Starting hold out prediction with 6 splits for RandomForestClassifier.
Starting hold out prediction with 6 splits for AdaBoostClassifier.
Starting hold out prediction with 6 splits for GaussianNB.

Create meta-features for testing data

In [27]:
meta_test = []
for i in base_clf:
    
    # Create hold out predictions for a classifier
    i.fit(X_train, y_train)
    meta_test_clf = i.predict_proba(X_test)
    
    # Remove redundant column
    meta_test_clf = np.delete(meta_test_clf, 0, axis=1).ravel()
    
    # Gather meta training data
    meta_test.append(meta_test_clf)
    
meta_test = np.array(meta_test).T 

Predict on Stacking Classifier

In [28]:
# Set seed
if 'random_state' in stck_OV.get_params().keys():
    stck_OV.set_params(random_state=SEED)

# Optional (Add original features to meta)
original_flag = False
if original_flag:
    meta_train = np.concatenate((meta_train, X_train), axis=1)
    meta_test = np.concatenate((meta_test, X_test), axis=1)

# Fit model
stck_OV.fit(meta_train, y_train)

# Predict
y_pred = stck_OV.predict(meta_test)

# Calculate accuracy
acc = accuracy_score(y_test, y_pred)
pre = precision_score(y_test, y_pred,average = 'macro')
auc = roc_auc_score(y_test, y_pred)

print('Stacking {} AUC: {:.4f}
Stacking LogisticRegression AUC: 98.4621%
In [29]:
Classification_Assessment(stck_OV ,meta_train, ytrain_OV, meta_test, y_test)
Recall Training data:      1.0
Precision Training data:   0.9994
----------------------------------------------------------------------
Recall Test data:          0.0
Precision Test data:       0.0
----------------------------------------------------------------------
Confusion Matrix Test data
[[8259    0]
 [ 129    0]]
----------------------------------------------------------------------
Valuation for test data only:
              precision    recall  f1-score   support

           0       0.98      1.00      0.99      8259
           1       0.00      0.00      0.00       129

    accuracy                           0.98      8388
   macro avg       0.49      0.50      0.50      8388
weighted avg       0.97      0.98      0.98      8388

---------------------
AUC_train: 1.000
AUC_test:  0.406
---------------------
Accuracy Training data:      0.9997
Accuracy Test data:          0.9846
----------------------------------------------------------------------
Valuation for test data only:

If we were processing Titanic data, I would expect less of a catastrophe like this. All in all I can’t explain what is wrong because it should play normally, because in models the thrashold point (red point) was at the top of the ROC cross. Unfortunately, when creating the second-level stacking classification, something got lost. This is not a mistake, because I repeated this analysis several times. Something is wrong and I don’t know what and I have no idea.
Now we will start playing thrashold sensitivity control so that the model finally begins classifying the result variables 1.

I wrote on the basis of the previous code, a program that will modernize the threshold. A thicket of numbers and names begins, so I introduced colors to print.