Feature Selection Techniques – Embedded Method (Lasso)

300320202027

Embedded methods are iterative in a sense that takes care of each iteration of the model training process and carefully extract those features which contribute the most to the training for a particular iteration. Regularization methods are the most commonly used embedded methods which penalize a feature given a coefficient threshold. Here we will do feature selection using Lasso regularization. If the feature is irrelevant, lasso penalizes its coefficient and make it 0. Hence the features with coefficient = 0 are removed and the rest are taken.

In [1]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
import warnings
warnings.filterwarnings("ignore")
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
np.random.seed(123)
In [2]:
##  colorful prints
def black(text):
     print('33[30m', text, '33[0m', sep='')  
def red(text):
     print('33[31m', text, '33[0m', sep='')  
def green(text):
     print('33[32m', text, '33[0m', sep='')  
def yellow(text):
     print('33[33m', text, '33[0m', sep='')  
def blue(text):
     print('33[34m', text, '33[0m', sep='') 
def magenta(text):
     print('33[35m', text, '33[0m', sep='')  
def cyan(text):
     print('33[36m', text, '33[0m', sep='')  
def gray(text):
     print('33[90m', text, '33[0m', sep='')
In [3]:
df = pd.read_csv ('/home/wojciech/Pulpit/6/Breast_Cancer_Wisconsin.csv')
green(df.shape)
df.head(3)
(569, 33)
Out[3]:
id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean concave points_mean texture_worst perimeter_worst area_worst smoothness_worst compactness_worst concavity_worst concave points_worst symmetry_worst fractal_dimension_worst Unnamed: 32
0 842302 M 17.99 10.38 122.8 1001.0 0.11840 0.27760 0.3001 0.14710 17.33 184.6 2019.0 0.1622 0.6656 0.7119 0.2654 0.4601 0.11890 NaN
1 842517 M 20.57 17.77 132.9 1326.0 0.08474 0.07864 0.0869 0.07017 23.41 158.8 1956.0 0.1238 0.1866 0.2416 0.1860 0.2750 0.08902 NaN
2 84300903 M 19.69 21.25 130.0 1203.0 0.10960 0.15990 0.1974 0.12790 25.53 152.5 1709.0 0.1444 0.4245 0.4504 0.2430 0.3613 0.08758 NaN

3 rows × 33 columns

Deleting unneeded columns

In [4]:
df['concave_points_worst'] = df['concave points_worst']
df['concave_points_se'] = df['concave points_se']
df['concave_points_mean'] = df['concave points_mean']

del df['Unnamed: 32']
del df['diagnosis']
del df['id']
In [5]:
df.isnull().sum()
Out[5]:
radius_mean                0
texture_mean               0
perimeter_mean             0
area_mean                  0
smoothness_mean            0
compactness_mean           0
concavity_mean             0
concave points_mean        0
symmetry_mean              0
fractal_dimension_mean     0
radius_se                  0
texture_se                 0
perimeter_se               0
area_se                    0
smoothness_se              0
compactness_se             0
concavity_se               0
concave points_se          0
symmetry_se                0
fractal_dimension_se       0
radius_worst               0
texture_worst              0
perimeter_worst            0
area_worst                 0
smoothness_worst           0
compactness_worst          0
concavity_worst            0
concave points_worst       0
symmetry_worst             0
fractal_dimension_worst    0
concave_points_worst       0
concave_points_se          0
concave_points_mean        0
dtype: int64
In [6]:
import seaborn as sns

sns.heatmap(df.isnull(),yticklabels=False,cbar=False,cmap='viridis')
Out[6]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f82c6742350>

Deletes duplicates

there were no duplicates

In [7]:
green(df.shape)
df.drop_duplicates(keep='first', inplace=True)
blue(df.shape)
(569, 33)
(569, 33)
In [8]:
blue(df.dtypes)
radius_mean                float64
texture_mean               float64
perimeter_mean             float64
area_mean                  float64
smoothness_mean            float64
compactness_mean           float64
concavity_mean             float64
concave points_mean        float64
symmetry_mean              float64
fractal_dimension_mean     float64
radius_se                  float64
texture_se                 float64
perimeter_se               float64
area_se                    float64
smoothness_se              float64
compactness_se             float64
concavity_se               float64
concave points_se          float64
symmetry_se                float64
fractal_dimension_se       float64
radius_worst               float64
texture_worst              float64
perimeter_worst            float64
area_worst                 float64
smoothness_worst           float64
compactness_worst          float64
concavity_worst            float64
concave points_worst       float64
symmetry_worst             float64
fractal_dimension_worst    float64
concave_points_worst       float64
concave_points_se          float64
concave_points_mean        float64
dtype: object
In [9]:
df.columns
Out[9]:
Index(['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean',
       'smoothness_mean', 'compactness_mean', 'concavity_mean',
       'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
       'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
       'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
       'fractal_dimension_se', 'radius_worst', 'texture_worst',
       'perimeter_worst', 'area_worst', 'smoothness_worst',
       'compactness_worst', 'concavity_worst', 'concave points_worst',
       'symmetry_worst', 'fractal_dimension_worst', 'concave_points_worst',
       'concave_points_se', 'concave_points_mean'],
      dtype='object')

We choose the continuous variable – compactness_mean

In [10]:
print('max:',df['compactness_mean'].max())
print('min:',df['compactness_mean'].min())

sns.distplot(np.array(df['compactness_mean']))
max: 0.3454
min: 0.01938
Out[10]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f82c66b0090>

Lasso

In [11]:
X = df.drop('compactness_mean', axis=1) 
y = df['compactness_mean']  

I set the number of variables that will remain in the model

In [12]:
Num_v = 15
In [13]:
from sklearn import linear_model

#rlasso = RandomizedLasso(alpha=0.025)

# Standaryzacja zmiennych

clf = linear_model.Lasso(alpha=0.1, positive=True)
clf.fit(X, y)


blue(clf.coef_)
print()
green(clf.intercept_)
print()
red(clf.score(X,y))
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 2.11821738e-05 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 8.17079026e-04 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]

0.015845670027763575

0.3452546166160324

The positive parameter, which on Truei forces the coefficients to be positive. In addition, setting alpha regularization to a value close to 0 (i.e., 0.001) causes Lasso to mimic linear regression without regularization.

Metoda zip na wyświetlenie rankingu cech

In [14]:
PPS = clf.coef_

KOT_lasso = dict(zip(df, PPS))
KOT_sorted_keys_lasso = sorted(KOT_lasso, key=KOT_lasso.get, reverse=True)

for r in KOT_sorted_keys_lasso:
    print (r, (KOT_lasso[r]))
texture_worst 0.0008170790257354554
perimeter_se 2.118217382166424e-05
radius_mean 0.0
texture_mean 0.0
perimeter_mean 0.0
area_mean 0.0
smoothness_mean 0.0
compactness_mean 0.0
concavity_mean 0.0
concave points_mean 0.0
symmetry_mean 0.0
fractal_dimension_mean 0.0
radius_se 0.0
texture_se 0.0
area_se 0.0
smoothness_se 0.0
compactness_se 0.0
concavity_se 0.0
concave points_se 0.0
symmetry_se 0.0
fractal_dimension_se 0.0
radius_worst 0.0
perimeter_worst 0.0
area_worst 0.0
smoothness_worst 0.0
compactness_worst 0.0
concavity_worst 0.0
concave points_worst 0.0
symmetry_worst 0.0
fractal_dimension_worst 0.0
concave_points_worst 0.0
concave_points_se 0.0

We’re adding a result variable

In [15]:
df2 = df[['compactness_mean','texture_worst','perimeter_se']]
df2.head(3)
Out[15]:
compactness_mean texture_worst perimeter_se
0 0.27760 17.33 8.589
1 0.07864 23.41 3.398
2 0.15990 25.53 4.585

The Backward Elimination algorithm stated that reducing variables does not improve the model. Therefore, the number of variables was left unchanged.

OLS linear regression model for variables before reduction

In [16]:
blue(df.shape)
(569, 33)
In [17]:
X1 = df.drop('compactness_mean', axis=1) 
y1 = df['compactness_mean']  
In [18]:
from statsmodels.formula.api import ols
import statsmodels.api as sm

model = sm.OLS(y1, sm.add_constant(X1))
model_fit = model.fit()

print('R2: #blue(model_fit.summary())
R2: 0.980200

OLS linear regression model for variables after reduction

In [19]:
blue(df2.shape)
(569, 3)
In [20]:
X2 = df2.drop('compactness_mean', axis=1) 
y2 = df2['compactness_mean']  
In [22]:
from statsmodels.formula.api import ols
import statsmodels.api as sm

model = sm.OLS(y2, sm.add_constant(X2))
model_fit = model.fit()

print('R2: #blue(model_fit.summary())
red('The R2 coefficient is approximately similar to the previously calculated clf.score (X, y).')
R2: 0.321180
The R2 coefficient is approximately similar to the previously calculated clf.score (X, y).